
 
ESTIMATING THE TECHNOLOGY OF COGNITIVE AND NONCOGNITIVE SKILL FORMATION
Author(s): Flavio Cunha, James J. Heckman and  Susanne M. Schennach
Source: Econometrica, Vol. 78, No. 3 (May, 2010), pp. 883-931
Published by: The Econometric Society
Stable URL: http://www.jstor.org/stable/40664515
Accessed: 11-08-2016 18:27 UTC

 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

http://about.jstor.org/terms

 

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted

digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about

JSTOR, please contact support@jstor.org.

Wiley, The Econometric Society are collaborating with JSTOR to digitize, preserve and extend access to
Econometrica

This content downloaded from 130.91.144.125 on Thu, 11 Aug 2016 18:27:50 UTC
All use subject to http://about.jstor.org/terms



 Econometrica, Vol. 78, No. 3 (May, 2010), 883-931

 ESTIMATING THE TECHNOLOGY OF COGNITIVE AND
 NONCOGNITIVE SKILL FORMATION

 By Flavio Cunha, James J. Heckman, and Susanne M. Schennach1

 This paper formulates and estimates multistage production functions for children's
 cognitive and noncognitive skills. Skills are determined by parental environments and
 investments at different stages of childhood. We estimate the elasticity of substitution
 between investments in one period and stocks of skills in that period to assess the
 benefits of early investment in children compared to later remediation. We establish
 nonparametric identification of a general class of production technologies based on
 nonlinear factor models with endogenous inputs. A by-product of our approach is a
 framework for evaluating childhood and schooling interventions that does not rely on
 arbitrarily scaled test scores as outputs and recognizes the differential effects of the
 same bundle of skills in different tasks. Using the estimated technology, we determine
 optimal targeting of interventions to children with different parental and personal birth
 endowments. Substitutability decreases in later stages of the life cycle in the production
 of cognitive skills. It is roughly constant across stages of the life cycle in the production
 of noncognitive skills. This finding has important implications for the design of policies
 that target the disadvantaged. For most configurations of disadvantage it is optimal to
 invest relatively more in the early stages of childhood than in later stages.

 Keywords: Cognitive skills, noncognitive skills, dynamic factor analysis, endogene-
 ity of inputs, anchoring test scores, parental influence.
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 1. INTRODUCTION

 A LARGE BODY OF RESEARCH documents the importance of cognitive skills in
 producing social and economic success.2 An emerging body of research estab-
 lishes the parallel importance of noncognitive skills, that is, personality, social,
 and emotional traits.3 Understanding the factors that affect the evolution of
 cognitive and noncognitive skills is important for understanding how to pro-
 mote successful lives.4

 This paper estimates the technology governing the formation of cognitive
 and noncognitive skills in childhood. We establish identification of general
 nonlinear factor models that enable us to determine the technology of skill for-
 mation. Our multistage technology captures different developmental phases in
 the life cycle of a child. We identify and estimate substitution parameters that
 determine the importance of early parental investment for subsequent lifetime
 achievement, and the costliness of later remediation if early investment is not
 undertaken.

 Cunha and Heckman (2007) present a theoretical framework that orga-
 nizes and interprets a large body of empirical evidence on child and animal
 development.5 Cunha and Heckman (2008) estimate a linear dynamic fac-
 tor model that exploits cross-equation restrictions (covariance restrictions) to
 secure identification of a multistage technology for child investment.6 With
 enough measurements relative to the number of latent skills and types of in-
 vestment, it is possible to identify the latent state space dynamics that generate
 the evolution of skills.

 The linear technology used by Cunha and Heckman (2008) imposes the as-
 sumption that early and late investments are perfect substitutes over the fea-
 sible set of inputs. This paper identifies a more general nonlinear technology
 by extending linear state space and factor analysis to a nonlinear setting. This
 extension allows us to identify crucial elasticity of substitution parameters that
 govern the trade-off between early and late investments in producing adult
 skills.

 2See Herrnstein and Murray (1994), Murnane, Willett, and Levy (1995), and Cawley, Heck-
 man, and Vytlacil (2001).

 3 See Heckman, Stixrud, and Urzua (2006), Borghans, Duckworth, Heckman, and ter Weel
 (2008), and the references they cite. See also the special issue of the Journal of Human Resources,
 43, Fall 2008 (Kniesner and ter Weel (2008)) on noncognitive skills.

 4See Cunha, Heckman, Lochner, and Masterov (2006) and Cunha and Heckman (2007, 2009).
 5 This evidence is summarized in Knudsen, Heckman, Cameron, and Shonkoff (2006) and

 Heckman (2008).
 6See Shumway and Stoffer (1982) and Watson and Engle (1983) for early discussions of such

 models. Amemiya and Yalcin (2001) survey the literature on nonlinear factor analysis in statistics.
 Our identification analysis is new. For a recent treatment of dynamic factor and related state
 space models, see Durbin, Harvey, Koopman, and Shephard (2004) and the voluminous literature
 they cite.
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 COGNITIVE AND NONCOGNITIVE SKILL FORMATION 885

 Drawing on the analyses of Schennach (2004a) and Hu and Schennach
 (2008), we establish identification of the technology of skill formation. We re-
 lax the strong independence assumptions for error terms in the measurement
 equations that are maintained in Cunha and Heckman (2008) and Carneiro,
 Hansen, and Heckman (2003). The assumption of linearity of the technology
 in inputs that is used by Cunha and Heckman (2008) and Todd and Wolpin
 (2003, 2005) is not required because we allow inputs to interact in produc-
 ing outputs. We generalize the factor-analytic index function models used by
 Carneiro, Hansen, and Heckman (2003) to allow for more general functional
 forms for measurement equations. We solve the problem of defining a scale
 for the output of childhood investments by anchoring test scores using adult
 outcomes of the child, which have a well defined cardinal scale. We deter-
 mine the latent variables that generate test scores by estimating how these
 latent variables predict adult outcomes.7 Our approach sets the scale of test
 scores and latent variables in an interpretable metric. Using this metric, ana-
 lysts can meaningfully interpret changes in output and conduct interpretable
 value-added analyses.8 We also solve the problem of missing inputs in esti-
 mating technologies in a way that is much more general than the widely used
 framework of Olley and Pakes (1996) that assumes perfect proxies for latent
 factors. We allow for imperfect proxies and establish that measurement error
 is substantial in the data analyzed in this paper.

 The plan of this paper is as follows. Section 2 briefly summarizes the previ-
 ous literature to motivate our contribution to it. Section 3 presents our iden-
 tification analysis. Section 4 discusses the data used to estimate the model,
 our estimation strategy, and the model estimates. Section 5 concludes. Exten-
 sive appendices comprise the Supplemental Material (Cunha, Heckman, and
 Schennach (2010)).

 2. A MODEL OF COGNITIVE AND NONCOGNITIVE SKILL FORMATION

 We analyze a model with multiple periods of childhood, í e {1, 2, . . . , T},
 T > 2, followed by A periods of adult working life, t e{T + 1,T + 2,...,T +
 A}. The T childhood periods are divided into S stages of development, s e
 {1, . . . , S] with S < T. Adult outcomes are produced by cognitive skills, 6c,t+i,
 and noncognitive skills, 0NtT+u a* the beginning of the adult years.9 Denote
 parental investments at age t in child skill k by Iktt, k e {C, N}.

 7Cawley, Heckman, and Vytlacil (1999) anchor test scores in earnings outcomes.
 8 Cunha and Heckman (2008) develop a class of anchoring functions invariant to affine trans-

 formations. This paper develops a more general class of monotonie transformations and presents
 a new analysis of joint identification of the anchoring equations and the technology of skill for-
 mation.

 9This model generalizes the model of Becker and Tomes (1986), who assume only one pe-
 riod of childhood (T = 1) and consider one output associated with "human capital" that can be
 interpreted as a composite of cognitive (C) and noncognitive (N) skills. We do not model post-
 childhood investment.
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 886 F. CUNHA, J. J. HECKMAN, AND S. M. SCHENNACH

 Skills evolve in the following way. Each agent is born with initial condi-
 tions öi = (0c,i> #au). Family environments and genetic factors may influence
 these initial conditions (see Olds (2002) and Levitt (2003)). We denote by
 dp = (dc,p, 0Nip) parental cognitive and noncognitive skills, respectively. 6t =
 (0c,í? 6n,í) denotes the vector of skill stocks in period t. Let rjt = (r)C,t, rjNt)
 denote shocks and/or unobserved inputs that affect the accumulation of cogni-
 tive and noncognitive skills, respectively. The technology of production of skill
 k in period t and developmental stage s depends on the stock of skills in pe-
 riod t, investment at t, Iktt, parental skills, 6P, shocks in period t, r]kyt, and the
 production function at stage s,

 (2.1) Ok,t+i = fk,s(0t, h,f> Qp, Vk,t)

 for k e {C, N], t e {1, 2, . . . , T], and s e {1, . . . , S}. We assume that fktS is
 monotone increasing in its arguments, twice continuously differentiable, and
 concave in IkJ. In this model, stocks of current period skills produce next pe-
 riod skills and affect the current period productivity of investments. Stocks of
 cognitive skills can promote the formation of noncognitive skills and vice versa
 because 6t is an argument of (2.1).

 Direct complementarity between the stock of skill / and the productivity of
 investment Ikt in producing skill k in period t arises if

 ?/"''}* >0> te{h...,T},l,ke{C,N}.

 Period t stocks of abilities and skills promote the acquisition of skills by mak-
 ing investment more productive. Students with greater early cognitive and
 noncognitive abilities are more efficient in later learning of both cognitive
 and noncognitive skills. The evidence from the early intervention literature
 suggests that the enriched early environments of the Abecedarian, Perry, and
 Chicago Child-Parent Center (CPC) programs promoted greater efficiency in
 learning in schools and reduced problem behaviors.10

 Adult outcome j, Qj, is produced by a combination of different skills at the
 beginning of period T + 1:

 (2.2) Qj = gj(dc,T+u 0NtT+1), j e {1, . . . , /}.n

 10See, for example, Cunha, Heckman, Lochner, and Masterov (2006), Heckman, Malofeeva,
 Pinto, and Savelyev (2009), Heckman, Moon, Pinto, Savelyev, and Yavitz (2010a, 2010b), and
 Reynolds and Temple (2009).

 11 To focus on the main contribution of this paper, we focus on investment in children. Thus we
 assume that 6T+' is the adult stock of skills for the rest of life, contrary to the evidence reported
 in Borghans, Duckworth, Heckman, and ter Weel (2008). The technology could be extended to
 accommodate adult investment as in Ben-Porath (1967) or its generalization Heckman, Lochner,
 and Taber (1998).
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 COGNITIVE AND NONCOGNITIVE SKILL FORMATION 887

 These outcome equations capture the twin concepts that both cognitive and
 noncognitive skills matter for performance in most tasks in life, and have dif-
 ferent effects in different tasks in the labor market and in other areas of social

 performance. Outcomes include test scores, schooling, wages, occupational at-
 tainment, hours worked, criminal activity, and teenage pregnancy.

 In this paper, we identify and estimate a constant elasticity of substitution
 (CES) version of technology (2.1) where we assume that dc,t, 6N>t,Ic,t,lN,t,
 6c,p, and 6N,P are scalars. Outputs of skills at stage s are governed by

 (2.3) ec,t+i = [ys,cX:f + ys,cAs;t

 + ys,cAsf + r,c,4Ö^c + ys,c,5et;;cp]ì/<f>s>c

 and

 (2.4) 0W,í+1 = [ys,N,l0c,t "*" ys,N,2^N,t

 + ys,N,3its;tN + ys,NAets;p + y^O17^,

 where ysXl e [0, 1], £, Ta,/ = 1 for * e {C, TV}, / e {1, . . . , 5}, t e {1, . . . , T},
 and s e {1, . . . , S}. 1/(1 - (f>s,k) is the elasticity of substitution in the inputs
 producing 6kJ+i, where (f)s ¿ e (- oo, 1] for k e {C, TV}. It is a measure of how
 easy it is to compensate for low levels of stocks 6c,t and 6Njt inherited from the
 previous period with current levels of investment Ic,t and INtt . For the moment,
 we ignore the shocks 7]kt in (2.1), although they play an important role in our
 empirical analysis.

 A CES specification of adult outcomes is

 (2.5) Qj = {pjOcT+i)*^ + (1 - Pi){dNiT+l)^}l/*Q^

 where p; € [0, 1] and cf>Qj e (-oo, 1] for j = 1, . . . , /. 1/(1 - <£ôj) is the elastic-
 ity of substitution between different skills in the production of outcome j. The
 ability of noncognitive skills to compensate for cognitive deficits in producing
 adult outcomes is governed by (f)Qij. The importance of cognition in producing
 output in task j is governed by the share parameter py.

 To gain some insight into this model, consider a special case investigated in
 Cunha and Heckman (2007), where childhood lasts two periods (T = 2), there
 is one adult outcome ("human capital") so / = 1, and the elasticities of sub-
 stitution are the same across technologies (2.3) and (2.4) and in the outcome
 (2.5), so (f)SiC = <f>s,N = <t>Q = (t> for all s e {1, . . . , S}. Assume that there is one
 investment good in each period that increases both cognitive and noncognitive
 skills, though not necessarily by the same amount (Ikìt = It,k e {C, Af }). In this
 case, the adult outcome is a function of investments, initial endowments, and
 parental characteristics, and can be written as

 (2.6) Q = [Tjf + T2lf + T3ö£fl + T4<! + T50+CtP + T6<P]^,
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 888 F. CUNHA, J. J. HECKMAN, AND S. M. SCHENNACH

 where Tt for / = 1, . . . , 6 depend on the parameters of equations (2.3)-(2.5).12
 Cunha and Heckman (2007) analyze the optimal timing of investment using a
 special version of the technology embodied in (2.6).

 Let R(Q) = T^i^YwQ denote the net Posent value of the child's fu-
 ture income computed with respect to the date of birth, and w is the return per
 unit Q. Parents have resources M that they use to invest in period 1, Iu and
 period 2, 72. The objective of the parent is to maximize the net present value of
 the child's future income given parental resource constraints. Assuming an in-
 terior solution, that the price of investment in period 1 is one, the relative price
 of investment in period 2 is 1/(1 + r), the optimal ratio of period 1 investment
 to period 2 investment is

 <"> O-(¿*Hí)-to«(i+4
 Figure 1 plots the ratio of early to late investment as a function of ti/t2 for
 different values of 4> assuming r = 0. Ceteris paribus, the higher n relative to
 t2, the higher first period investment should be relative to second period in-
 vestment. The parameters t' and r2 are determined in part by the productivity
 of investments in producing skills, which are generated by the technology pa-
 rameters yStkt3 for s e {1, 2} and k <e {C, N). They also depend on the relative
 importance of cognitive skills, p, versus noncognitive skills, 1 - p, in producing
 the adult outcome Q. Ceteris paribus, if ti/t2 > (1 + r), the higher the CES
 complementarity (i.e., the lower (/>), the greater is the ratio of optimal early to
 late investment. The greater r, the smaller should be the optimal ratio of early
 to late investment. In the limit, if investments complement each other strongly,
 optimality implies that they should be equal in both periods.

 This example builds intuition about the importance of the elasticity of sub-
 stitution in determining the optimal timing of life-cycle investments. However,
 it oversimplifies the analysis of skill formation. It is implausible that the elas-
 ticity of substitution between skills in producing adult outcomes (1/(1 - 0g))
 is the same as the elasticity of substitution between inputs in producing skills,
 and that a common elasticity of substitution governs the productivity of inputs
 in producing both cognitive and noncognitive skills.

 Our analysis allows for multiple adult outcomes and multiple skills. We al-
 low the elasticities of substitution governing the technologies for producing
 cognitive and noncognitive skills to differ at different stages of the life cycle,
 and for both to be different from the elasticities of substitution for cognitive
 and noncognitive skills in producing adult outcomes. We test and reject the
 assumption that 05,c = <I>s,n for s g {1, . . . , S}.

 12See Appendix Al for the derivation of this expression in terms of the parameters of equa-
 tions (2.3)-(2.5).
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 COGNITIVE AND NONCOGNITIVE SKILL FORMATION 889

 FIGURE 1. - Ratio of early to late investment in human capital as a function of the ratio of
 first period to second period investment productivity for different values of the complementarity
 parameter; assumes /• = 0. Source: Cunha and Heckman (2007).

 3. IDENTIFYING THE TECHNOLOGY USING DYNAMIC FACTOR MODELS

 Identifying and estimating technology (2.1) is challenging. Both inputs and
 outputs can only be proxied. Measurement error in general nonlinear specifi-
 cations of technology (2.1) raises serious econometric challenges. Inputs may
 be endogenous and the unobservables in the input equations may be correlated
 with unobservables in the technology equations.

 This paper addresses these challenges. Specifically, we execute the following
 tasks: (i) Determine how stocks of cognitive and noncognitive skills at date t
 affect the stocks of skills at date t + 1, identifying both self-productivity (the
 effects of 0Nj on 0/V.,+i and of 0Cj on 0c,t+i) and cross-productivity (the ef-
 fects of 0Cj on Ö.V./+1 and of 6Nj on #o+i) at each stage of the life cycle,
 (ii) Develop a nonlinear dynamic factor model where (0t,It, 9P) is proxied
 by vectors of measurements which include test scores and input measures as
 well as outcome measures. In our analysis, test scores and personality eval-
 uations are indicators of latent skills. Parental inputs are indicators of latent
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 890 F. CUNHA, J. J. HECKMAN, AND S. M. SCHENNACH

 investment. We account for measurement error in these proxies, (iii) Estimate
 the elasticities of substitution for the technologies governing the production
 of cognitive and noncognitive skills, (iv) Anchor the scale of test scores using
 adult outcome measures instead of relying on test scores as measures of out-
 put. This allows us to avoid relying on arbitrary test scores as measurements
 of output. Any monotonie function of a test score is a valid test score, (v) Ac-
 count for the endogeneity of parental investments when parents make child
 investment decisions in response to the characteristics of the child that may
 change over time as the child develops and as new information about the child
 is revealed.

 Our analysis of identification proceeds in the following way. We start with
 a model where measurements are linear and separable in the latent variables,
 as in Cunha and Heckman (2008). We establish identification of the joint dis-
 tribution of the latent variables without imposing conventional independence
 assumptions about measurement errors. With the joint distribution of latent
 variables in hand, we nonparametrically identify technology (2.1) given alter-
 native assumptions about tjm. We then extend this analysis to identify non-
 parametric measurement and production models. We anchor the latent vari-
 ables in adult outcomes to make their scales interpretable. Finally, we account
 for endogeneity of inputs in the technology equations and model investment
 behavior.

 3.1. Identifying the Distribution of the Latent Variables

 We use a general notation for all measurements to simplify the econometric
 analysis. Let Zatkitj be the jth measurement at time t on measure of type a for
 factor k. We have measurements on test scores and parental and teacher as-
 sessments of skills (a = 1) on investment (a = 2) and on parental endowments
 (a = 3). Each measurement has a cognitive and noncognitive component, so
 k g {C,N}. We initially assume that measurements are additively separable
 functions of the latent factors Qk¿ and Ikt:

 (3.1) Zl,k,t,j - f¿l,k,t,j + al,k,t,j0k,t + Gl,k,t,j,

 (3.2) Zl,k,t,j - ^2,k,t,j + a2,k,t,jlk,t + S2,k,t,j,

 where E(eaXtJ) = 0, ; e {1, . . . , M,,*,,}, t € {1, . . . , T), k e {C, TV}, a e {1, 2}
 and where sa,k,tj are uncorrelated across the ;.13 Assuming that parental en-
 dowments are measured only once in period t = 1, we write

 (3.3) Z3Xhj = fi3,k,ij + oL3ikXj0KP + ¿^Mj,14'15

 E(sxkXj) = 0, ;€{!,..., M3,M} and k e {C, N).

 13An economic model that rationalizes the investment measurement equations in terms of
 family inputs is presented in Appendix A2. See also Cunha and Heckman (2008).
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 The aatkftj are factor loadings. The parameters and variables are defined
 conditional on X. To reduce the notational burden, we keep X implicit. Fol-
 lowing standard conventions in factor analysis, we set the scale of the fac-
 tors by assuming aa,k,t,i = 1 and normalize E(dkJ) = 0 and E(Iktt) = 0 for all
 k e {C, N}, t = 1, . . . , T. Separability makes the identification analysis trans-
 parent. We consider a more general nonseparable model below. Given mea-
 surements Zatktttj, we can identify the mean functions iia,k,t,j> a e U>2, 3},
 t e {1, . . . , T}, k g {C, N], which may depend on the X.

 3.2. Identification of the Factor Loadings and of the Joint Distributions
 of the Latent Variables

 We first establish identification of the factor loadings under the assumption
 that the sa,k,tj are uncorrelated across t and that the analyst has at least two
 measures of each type of child skills and investments in each period t, where
 T > 2. Without loss of generality, we focus on aiiCttj and note that similar
 expressions can be derived for the loadings of the other latent factors.
 Since Zic,m and Zi,c,í+i,i are observed, we can compute Cov(ZiC,í,i,

 Z',c,t+i,i) from the data. Because of the normalization ahC,t,i = 1 for all t, we
 obtain

 (3.4) Cov(Zi,CfU, Z1>Cf/+u) - Cov(flCfi, 0Cf,+i)-

 In addition, we can compute the covariance of the second measurement on
 cognitive skills at period t with the first measurement on cognitive skills at
 period t + 1:

 (3.5) Cov(Zi>c,/,2, Zi,c,r+i,i) = oihC,t,2 Cov(dc,t, Oc,t+i).

 If Cov(öc,i, Oc,t+i) t^ 0, we can identify the loading aitC,t,2 fr°m the ratio of
 covariances

 CöV(Zi9c,t,29 Zitc,t+l,i)
 -p' - 7^

 Cov(Zitc,t,u Zhctt+i,i)

 14This formulation assumes that measurements a e {1, 2, 3} proxy only one factor. This is not
 strictly required for identification. One can identify the correlated factor model if there is one
 measurement for each factor that depends solely on the one factor, and standard normalizations
 and rank conditions are imposed. The other measurements can be generated by multiple fac-
 tors. This follows from the analysis of Anderson and Rubin (1956), who give precise conditions
 for identification in factor models. Carneiro, Hansen, and Heckman (2003) consider alternative
 specifications. The key idea in classical factor approaches is one normalization of the factor load-
 ing for each factor in one measurement equation to set the scale of the factor and at least one
 measurement dedicated to each factor.

 15 In our framework, parental skills are assumed to be constant over time as a practical matter
 because we only observe parental skills once.
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 If there are more than two measures of cognitive skill in each period t, we can
 identify aitc,tj f°r 7 ^ {2, 3, . . . , Mìtc,t}, t e {1, . . . , T] up to the normalization
 «l.c.u = 1- The assumption that the ea¿,t,j are uncorrelated across t is then
 no longer necessary. Replacing ZhC,t+i,i by Zarik'ttr¿ for some (a' k' , f) which
 may or may not be equal to (1, C, t), we may proceed in the same fashion.16
 Note that the same third measurement Zai ¿',t',3 can be reused for all a, t, and
 k, implying that in the presence of serial correlation, the total number of mea-
 surements needed for identification of the factor loadings is 2L + 1 if there are
 L factors.

 Once the parameters ahC,tj are identified, we can rewrite (3.1), assuming
 <*i,c,tj ¥" 0, as

 (3.6) -±-l± = ^l^jL + oCt + ^l^¿? ; g {1, 2, . . . , AfifC>í}.

 In this form, it is clear that the known quantities Zi,c,tj/(Xi,c,t,j play the role
 of repeated error-contaminated measurements of Oc,/. Collecting results for
 all t = 1, . . . , T, we can identify the joint distribution of {0c,t}Tt=v Proceeding
 in a similar fashion for all types of measurements, a e {1,2,3}, on abilities
 k e {C, JV}, using the analysis in Schennach (2004a, 2004b), we can identify the
 joint distribution of all the latent variables. Define the matrix of latent variables
 by 0, where

 0 - ({0c,í}/=i> {ÔN,t}t=i, {Ic,t}t=i, {^v,í}/=i> Qc,p, 0n,p)-

 Thus, we can identify the joint distribution of 0, p{6).
 Although the availability of numerous indicators for each latent factor is

 helpful in improving the efficiency of the estimation procedure, the identifica-
 tion of the model can be secured (after the factor loadings are determined) if
 only two measurements of each latent factor are available. Since in our empiri-
 cal analysis we have at least two different measurements for each latent factor,
 we can define, without loss of generality, the two vectors

 ¿l,C,t,i I I ¿l,N,t,i | I ¿2,C,t,i I ¿2,N,t,i
 l'i l'i l'i I '

 ahC,t,i J t=' I al,N,t,i J t=l I a2,Ct,i J t=' I a2,N,t,i J I i=i

 , ¿€{1,2}.
 a3,CXi a3,NXi /

 16The idea is to write

 C0V(Zitcítí2, Za>tk>tt't3) _ Oil,C,t,2<Xa',k',?,3 Co^jOçt, O/c',t') _ <*',C,t,2 _

 Cov(ZhC,t,i,Za>,k's¿) a^ctAtaWSjCovidctiOk's) ai,c,t,i

 This only requires uncorrelatedness across different j but not across t.
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 COGNITIVE AND NONCOGNITIVE SKILL FORMATION 893

 These vectors consist of the first and the second measurements for each factor,
 respectively. The corresponding measurement errors are

 ei,C,t,i | I ei,N,t,i I | S2,C,r,< | | &2,N,t,i I
 OLl,C,t,i't=' Ya',N,t,i't=l [0Í2,C,t,i't=l i a2,N,t,i J t=l

 -L-L-L-,- -^ , «€{1,2}.
 a3,C,l,i a3,N,l,i/

 Identification of the distribution of 6 is obtained from the following theorem.
 Let L denote the total number of latent factors, which in our case is AT + 2.

 THEOREM 1: Let Wu W2, 6, œu and œ2 be random vectors taking values in RL
 and related through

 JV1 = e + ú)l9

 W2 = d + co2.

 If (i) E[o)i | Ö, o)2] = 0 and (ii) œ2 is independent from 6, then the density of 6 can
 be expressed in terms of observable quantities as:

 where in this expression i = V-Ï, provided that all the requisite expectations exist
 and E[éiW2] is nonvanishing. Note that the innermost integral is the integral of a
 vector-valued field along a piecewise smooth path joining the origin and the point
 ^€lL, while the outermost integral is over the whole RL space. If 6 does not
 admit a density with respect to the Lebesgue measure, pe(6) can be interpreted
 within the context of the theory of distributions. If some elements of 6 are perfectly
 measured, one may simply set the corresponding elements of W' and W2 to be
 equal. In this way, the joint distribution of mismeasured and perfectly measured
 variables is identified.

 For the proof, see Appendix A3. 1.17
 The striking improvement in this analysis over the analysis of Cunha and

 Heckman (2008) is that identification can be achieved under much weaker con-
 ditions regarding measurement errors - far fewer independence assumptions
 are needed. The asymmetry in the analysis of coi and œ2 generalizes previous
 analysis which treats these terms symmetrically. It gives the analyst a more flex-
 ible toolkit for the analysis of factor models. For example, our analysis allows
 analysts to accommodate heteroscedasticity in the distribution of (Oi that may

 17The results of Theorem 1 are sketched informally in Schennach (2004a, footnote 11).
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 depend on (o2 and 0. It also allows for potential correlation of components
 within the vectors wi and co2, thus permitting serial correlation within a given
 set of measurements.

 The intuition for identification in this paper, as in all factor analyses, is that
 the signal is common to multiple measurements, but the noise is not. To ex-
 tract the noise from the signal, the disturbances have to satisfy some form
 of orthogonality with respect to the signal and with respect to each other.
 These conditions are various uncorrelatedness assumptions, conditional mean
 assumptions, or conditional independence assumptions. They are used in var-
 ious combinations in Theorem 1, in Theorem 2 below, and in other results in
 this paper.

 3.3. The Identification of a General Measurement Error Model

 In this section, we extend the previous analysis for linear factor models to
 consider a measurement model of the general form

 (3.7) Zj = aj(e,ej) for ;e{l,...,M},

 where M > 3 and where the indicator Z; is observed while the latent factor
 0 and the disturbance e} are not. The variables Zy, 0, and Sj are assumed to
 be vectors of the same dimension. In our application, the vector of observed
 indicators and corresponding disturbances is

 Zj - ({Zl,C,íj}í==i> [ZiìNìtìj}t=v {Z2,c,t,j}t=V {^2,7V,í,y}í=i?

 ^cij, Z3ìN)Ìj)'

 Gj = ({£l,Oj}Ll> i£l,N,t,j}J=i, {£2,C,t,jiJ=i, iS2,N,t,j}J=i,

 £3,C,lj5 £3,C,N,l,j) '

 while the vector of unobserved latent factors is

 0 = ({0c,í}í=i> {^N,t)t=v Kc,í}/=ij {lN,t}t='-> Oc,p, 0n,p)'>

 The functions a;(-, •) for j e {1, . . . , M] in equations (3.7) are unknown. It is
 necessary to normalize one of them (e.g., <zi(-, •)) in some way to achieve iden-
 tification, as established in the following theorem.

 THEOREM 2: The distribution of 6 in equations (3.7) is identified under the
 following conditions:

 (i) The joint density of 6, Zi , Z2, and Z3 is bounded and so are all their mar-
 ginal and conditional densities.19'

 18 This is a density with respect to the product measure of the Lebesgue measure on RL x RL x
 RL and some dominating measure ¡x. Hence 6, Z', and Z2 must be continuously distributed while
 Z3 may be continuous or discrete.
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 (ii) Zi, Z2, and Z3 are mutually independent conditional on 0.
 (iii) pzx'z2(Zi | Z2) and pe'Zl(0 | Zi)form a bounded complete family of dis-

 tributions indexed by Z2 and Z1? respectively.

 (iv) Whenever 6^6, pz3'e(Z3 | 0) ¿md pz3'e(Z3 | 0) differ over a set of strictly
 positive probability.

 (v) 77zere ex/ste a known functional W, mapping a density to a vector, that has
 the property that W[pZl'd(' I 0)] = 0.

 See Appendix A3.2 for the proof.19
 The proof of Theorem 2 proceeds by casting the analysis of identification as

 a linear algebra problem analogous to matrix diagonalization. In contrast to
 the standard matrix diagonalization used in linear factor analyses, we do not
 work with random vectors. Instead, we work with their densities. This approach
 offers the advantage that the problem remains linear even when the random
 vectors are related nonlinearly.

 The conditional independence requirement of assumption (ii) is weaker than
 the full independence assumption traditionally made in standard linear factor
 models as it allows for heteroscedasticity. Assumption (iii) requires 0, Z1? and
 Z2 to be vectors of the same dimensions, while assumption (iv) can be satis-
 fied even if Z3 is a scalar. The minimum number of measurements needed for
 identification is therefore 2L + 1, which is exactly the same number of mea-
 surements as in the linear, classical measurement error case.

 Versions of assumption (iii) appear in the nonparametric instrumental vari-
 able literature (e.g., Newey and Powell (2003), Darolles, Florens, and Renault
 (2002)). Intuitively, the requirement that pzi'z2(Z' | Z2) forms a bounded com-
 plete family requires that the density of Z' vary sufficiently as Z2 varies (and
 similarlyfor^|Zl(0|Z1)).20

 Assumption (iv) is automatically satisfied, for instance, if 0 is univariate and
 ö3(0, £3) is strictly increasing in 0. However, it holds much more generally.
 Since a3(0, e3) is nonseparable, the distribution of Z3 conditional on 0 can
 change with 0, thus making it possible for assumption (iv) to be satisfied even
 if 03 (0, e3) is not strictly increasing in 0.

 Assumption (v) specifies how the observed Zx is used to determine the scale
 of the unobserved 0. The most common choices of the functional !P would be

 19 A vector of correctly measured variables C can trivially be added to the model by including
 C in the list of conditioning variables for all densities in the statement of the theorem. Theorem 2
 then implies that pd'c(0 | C) is identified. Since pc(C) is identified, it follows that pd,c(6, C) =
 Pe'c(0 I C)pc(C) is also identified.

 zuIn the case of classical measurement error, bounded completeness assumptions can be
 phrased in terms of primitive conditions that require nonvanishing characteristic functions of
 the distributions of the measurement errors as in Mattner (1993). However, apart from this spe-
 cial case, very little is known about primitive conditions for bounded completeness, and research
 is still ongoing on this topic. See d'Haultfoeuille (2006).
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 the mean, the mode, the median, or any other well defined measure of loca-
 tion. This specification allows for nonclassical measurement error. One way to
 satisfy this assumption is to normalize ax{8, ex) to be equal to 8 + eÌ9 where
 ei has zero mean, median, or mode. The zero mode assumption is particularly
 plausible for surveys where respondents face many possible wrong answers,
 but only one correct answer. Moving the mode of the answers away from zero
 would therefore require a majority of respondents to misreport in exactly the
 same way - an unlikely scenario. Many other nonseparable functions can also
 satisfy this assumption. With the distribution of pe{8) in hand, we can identify
 the technology using the analysis presented below in Section 3.4.

 Note that Theorem 2 does not claim that the distributions of the errors s¡
 or that the functions <Z/(-, •) are identified. In fact, it is always possible to alter
 the distribution of e¡ and the dependence of the function fl;(-, •) on its sec-
 ond argument in ways that cancel each other out, as noted in the literature on
 nonseparable models.21 However, lack of identifiability of these features of the
 model does not prevent identification of the distribution of 6.

 Nevertheless, various normalizations that ensure that the functions 0,(0, Sj)
 are fully identified are available. For example, if each element of Sj is normal-
 ized to be uniform (or any other known distribution), the a ¿(8, Sj) are fully
 identified. Other normalizations discussed in Matzkin (2003, 2007) are also
 possible. Alternatively, one may assume that the a ¡(8, Sj) are separable in e¡
 with zero conditional mean of Sj given 0.22 We invoke these assumptions when
 we identify the policy function for investments in Section 3.6.2 below.

 The conditions that justify Theorems 1 and 2 are not nested within each
 other. Their different assumptions represent different trade-offs best suited
 for different applications. While Theorem 1 would suffice for the empirical
 analysis of this paper, the general result established in Theorem 2 will likely be
 quite useful as larger sample sizes become available.

 Carneiro, Hansen, and Heckman (2003) present an analysis for nonsepara-
 ble measurement equations based on a separable latent index structure, but
 invoke strong independence and "identification-at-infinity" assumptions. Our
 approach for identifying the distribution of 8 from general nonseparable mea-
 surement equations does not require these strong assumptions. Note that it
 also allows the 8 to determine all measurements and for the 8 to be freely
 correlated.

 3.4. Nonparametric Identification of the Technology Function

 Suppose that the shocks r]kt are independent over time. Below, we analyze
 a more general case that allows for serial dependence. Once the density of

 21 See Matzkin (2003, 2007).
 22 Observe that Theorem 2 covers the identifiability of the outcome (Qj) functions (2.2) even if

 we supplement the model with errors e;-, ; e {1, ...,/}, that satisfy the conditions of the theorem.
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 0 is known, one can identify nonseparable technology function (2.1) for t e
 {1, . . . , T}, k e {C, N), and s e {1, . . . , S}. Even if (0„ /„ 0P) were perfectly
 observed, one could not separately identify the distribution of rjkt and the
 function fkjS because, without further normalizations, a change in the density
 of r¡kj can be undone by a change in the function fk,s.23

 One solution to this problem is to assume that (2.1) is additively separable in
 j]kt. Another way to avoid this ambiguity is to normalize 7]kt to have a uniform
 density on [0, 1], Any of the normalizations suggested by Matzkin (2003, 2007)
 could be used. Assuming i)ktt is uniform [0, 1], we establish that fktS is non-
 parametrically identified, by noting that, from the knowledge of pd, we can
 calculate, for any 9gI,

 Pr[0*f,+i < Ö I et9 /*,„ 0P] = G(0 | 0t, Ik,t, dP).

 We identify technology (2.1) using the relationship

 fkAOt, h,t, 0P, T)ktt) = G~l(7]kJ | 0,, /M, dP),

 where G~x{r¡kj ' 6t,Ik,t, Op) denotes the inverse of G(0 | 0t9htt9 Op) with re-
 spect to its first argument (assuming it exists), that is, the value 6 such that
 7]kt = G(0 | 0/,/jt,f, Op). By construction, this operation produces a function
 /*,, that generates outcomes 0*>f+1 with the appropriate distribution, because
 a continuously distributed random variable is mapped into a uniformly distrib-
 uted variable under the mapping defined by its own cumulative distribution
 function (c.d.f.).

 The more traditional separable technology with zero mean disturbance,
 dkt+1 - fk,s(Ot, h,t, dp) + Vk,t, is covered by our analysis if we define

 fk,s(Ot, Ikit, Op) = E[0ktt+i I 0t, Iktt, Op],

 where the expectation is taken under the density pdk t+l'et,ik t,eP, which can be
 calculated from pd. The density of r¡kt conditional on all variables is identified
 from

 P-nictiOtJict'OpiVkj I Ot,Ik,t, Op)

 = PO/ct+ilOt'hj'Op^k,* ~^~ E'-0k,t+l I 0t<> Ik,t, Op] I 0t, Ikyt, Op),

 since pek t+l'et,ik t,oP ¡s known once p0 is known. We now show how to anchor
 the scales of 0c,t+i and 0Nit+' using measures of adult outcomes.

 23See, for example, Matzkin (2003, 2007).
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 3.5. Anchoring Skills in an Interpretable Metric

 It is common in the empirical literature on child schooling and investment to
 measure outcomes by test scores. However, test scores are arbitrarily scaled. To
 gain a better understanding of the relative importance of cognitive and noncog-
 nitive skills and their interactions, and the relative importance of investments
 at different stages of the life cycle, it is desirable to anchor skills in a common
 scale. In what follows, we continue to keep the conditioning on the regressors
 implicit.

 We model the effect of period T + 1 cognitive and noncognitive skills on
 adult outcomes Z4j for j g {1, . . . ,/}.24 Suppose that there are J1 observed
 outcomes that are linear functions of cognitive and noncognitive skills at the
 end of childhood, that is, in period T,

 Z4J = /jl4j + a4icj0c,T+i + «4,N,y 0n,t+i + Gaj for j € {1, . . . , /i}.

 When adult outcomes are linear and separable functions of skills, we define
 the anchoring functions to be

 (3.8) gc,j(0c,T+i) = M4J + a4,cj0c,r+i,

 Sn,j(^N,T+i) = t¿4,j + a4,N,j^N,T+l-

 We can also anchor using nonlinear functions. One example would be an
 outcome produced by a latent variable Z£;., for ; e [J' + 1, ...,/}:

 Z4J = gj(0c,T+i> 0n,t+i) - £4,;-

 Note that we do not observe Z' ., but we observe the variable Z4J which is
 defined as

 Í 1, if gj(dc,T+u On,t+i) - eAJ > 0,
 1 0, otherwise.

 In this notation,

 Pr(Z4j = 1 I 6c,t+i, @n,t+i)

 = Fr[s4j < gj(0c,T+i> @n,t+i) I 0c,r+i? 0n,t+i'

 = Fe4 jlgjidcT+n @n,t+i) I 0c,r+i? 0n,t+i'

 = 8j(@c,T+ii 0n,t+i)-

 Adult outcomes such as high school graduation, criminal activity, drug use, and
 teenage pregnancy may be represented in this fashion.

 24The Z4J correspond to the Q¡ of Section 2.
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 To establish identification of gy(0c,r+i, 0n,t+i) for ; g {/i + 1, ...,/}, we in-
 clude the dummy Z4J in the vector 0. Assuming that the dummy Z4J is mea-
 sured without error, the corresponding element of the two repeated measure-
 ment vectors Wx and W2 are identical and equal to Z4j. Theorem 1 implies
 that the joint density of Z4J, dc,t, and 6NJ is identified. Thus, it is possible to
 identify Pr[Z4,; = 1 | 0c,r+i, 0n,t+iI

 We can extract two separate "anchors" gcj(0c,T+i) and gNj(0NJ+i) from the
 function gj(dc,T+i, 6n,t+i), by integrating out the other variable, for example,

 (3.9) gcj(Oc,T+i) = / gj(0CtT+u 0N,T+i)PeNJ+1(0N,T+i)deNiT+u

 gN,j(ÖN,T+l) = I gj(6c,T+l> 6N,T+l)PdCT+i(6c,T+l) ddc,T+l,

 where the marginal densities, PdjT{0NJ+i), j e {C, A^}, are identified by apply-
 ing the preceding analysis. Both gcj(0c,T+i) and gNj(dN,T+i) are assumed to
 be strictly monotonie in their arguments.

 The "anchored" skills, denoted by 0¿M, are defined as

 ëj-xt = gkj(Ok,t), k g {C, N},te{l,..., T).

 The anchored skills inherit the subscript j because different anchors generally
 scale the same latent variables differently.

 We combine the identification of the anchoring functions with the identifica-
 tion of the technology function fk,s(Ot, h,t, Op, Vu,t) established in the previous
 section to prove that the technology function expressed in terms of the an-

 chored skills - denoted by fk,sj(Õj,t, h,t, 0P, r]kt) - is also identified. To do so,
 redefine the technology function to be

 fk,sj(6j,C,t' Oj,N,t,htt> OC, Pi 0Nìp, 7]kt)

 = gkj{fk,s(§Cj(Oj,C,t), gÑ]j(0j,N,t), h,t, Oc,P, 0N,P, Vk,t)),

 ke[C,N],

 where gkj(') denotes the inverse of the function gkj(')> Invertibility follows
 from the assumed monotonicity. It is straightforward to show that

 fk,sj(6j,c,t> Oj,N,tiIk,ti Oc,p? 6n,p, Vk,t)

 = fk,s,j(gc,j(Oc,t), gN,j(0Nj), Ikit, 6C,P, 0N,p, 7]kj)

 = gkjifk^igcjigcjiOct)), gN]j(gN,j(0N,t)), h,t, öc,P, 0NiP, 7]kit))

 - gkjifk^siQct, On,í, hj, 6c,p, On,p, Vk,t))

 = gk,j(Ok,t+l) = 0*,/,f+l>
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 as desired. Hence, fktStj is the equation of motion for the anchored skills 0*,y,i+i
 that is consistent with the equation of motion fktS for the original skills 6kjt.

 3.6. Accounting for Endogeneity of Parental Investment

 3.6.1. Allowing for Unobserved Time-Invariant Heterogeneity

 Thus far, we have maintained the assumption that the error term rjkt in the
 technology (2.1) is independent of all the other inputs (0,, Iktt9 6P) as well as
 r)¿ ,, k^i. This implies that variables not observed by the econometrician are
 not used by parents to make their decisions regarding investments Ikt. This
 is a very strong assumption. The availability of data on adult outcomes can
 be exploited to relax this assumption and allow for endogeneity of the inputs.
 This subsection develops an approach for a nonlinear model based on time-
 invariant heterogeneity.

 To see how this can be done, suppose that we observe at least three adult
 outcomes, so that / > 3. We can then write outcomes as functions of T + 1
 skills as well as unobserved (by the economist) time-invariant heterogeneity
 component, tt, on which parents make their investment decisions:

 for 7€{1, 2,. ..,/}.

 We can use the analysis of Section 3.2, suitably extended to allow for mea-
 surements Z4y, to secure identification of the factor loadings a^Cj, a4,Nj, and
 «4,77,r We can apply the argument of Section 3.4 to secure identification of the
 joint distribution of (0t9 It, 6P, tt).25 Write rjkt = (tt, vk,t). Extending the pre-
 ceding analysis, we can identify a more general version of the technology:

 Ofc,t+1 - fk,s{Qt-> Ik,t> dp, 7T, Vkj).

 77 is permitted to be correlated with the inputs (6t, /,, 6P), and vkft is assumed
 to be independent from the vector (0,, /,, 0P, tt) as well as vUt for / ^ k. The
 next subsection develops a more general approach that allows tt to vary over
 time.

 3.6.2. More General Forms of Endogeneity

 This subsection relaxes the invariant heterogeneity assumption by using ex-
 clusion restrictions based on economic theory to identify the technology under
 more general conditions. irt evolves over time and agents make investment

 25 We discuss the identification of the factor loadings in this case in Appendix A4.
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 decisions based on it. Define yt as family resources in period t (e.g., income,
 assets, constraints). As in Sections 3.2 and 3.3, we assume that suitable mul-
 tiple measurements of (0P, {8t,Ic,t,lN,t,yt}J=i) are available to identify their
 (joint) distribution. In our application, we assume that yt is measured without
 error.26 We further assume that the error term r¡kt can be decomposed into
 two components, (77,, vkit), so that we may write the technology as

 (3.10) 0M+1 = /M(0,, /*,„ 6p, 77,, vKt).

 77, is assumed to be a scalar shock independent over people, but not over time.
 It is a common shock that affects all technologies, but its effect may differ
 across technologies. The component vktt is independent of 0,, Iktt9 6P, and yt9
 and independent of vktf for f ^ t. Its realization takes place at the end of
 period t, after investment choices have already been made and implemented.
 The shock 77, is realized before parents make investment choices, so we expect
 Ikyt to respond to it.

 We analyze a model of investment of the form

 (3.11) /,,, = qktt(et9 6P9 yt9 77,), k e {C, N}9te{l9...9 T).

 Equation (3.11) is the investment policy function that maps state variables for
 the parents, (0,, 6P9 yt9 77,), to the control variables Iktt for k e {C, N}.27

 Our analysis relies on the assumption that the disturbances 77, and vkit in
 equation (3.10) are both scalar, although all other variables may be vector-
 valued. If the disturbances 77, are independent and identically distributed
 (i.i.d.), identification is straightforward. To see this, impose an innocuous nor-
 malization (e.g., assume a specific marginal distribution for 77,). Then the rela-
 tionship Ikit = qk,t(dt9 6p, yt9 77,) can be identified along the lines of the argu-
 ment of Section 3.2 or 3.3, provided, for instance, that 77, is independent from
 (0t,dp,yt).

 If 77, is serially correlated, it is not plausible to assume independence be-
 tween 77, and 0,, because past values of 77, will have an impact on both current
 77, and on current 0, (via the effect of past 77, on past Ikt). To address this
 problem, lagged values of income yt can be used as instruments for 0, (6P and
 yt could serve as their own instruments). This approach works if 77, is indepen-
 dent of dp as well as past and present values of yt. After normalization of the
 distribution of the disturbance 77,, the general nonseparable function qt can
 be identified using quantile instrumental variable techniques (Chernozhukov,

 26Thus the "multiple measurements" on yt are all equal to each other in each period t.
 Z/The assumption of a common shock across technologies produces singularity across the in-

 vestment equations (3.11). This is not a serious problem because, as noted below in Section 4.2.5,
 we cannot distinguish cognitive investment from noncognitive investment in our data. We assume
 a single common investment, so qk,t(') = #'(') f°r & e (C> N}.
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 Imbens, and Newey (2007)) under standard assumptions in that literature, in-
 cluding monotonicity and completeness.28

 Once the functions qktt have been identified, one can obtain q~k'(0t, 0P,yt,
 Ik,t), the inverse of qk,t(0t, 0P, yt, ^t) with respect to its last argument, provided
 <lk,t(Ot, 0P, yt, 7Tt) is strictly monotone in 77, at all values of the arguments. We
 can then rewrite the technology function (3.11) as

 Ok,t+i = fk,s(Oti Ik,t> Op, qk t(0t, 0p,yt, /&,,), ^k,t)

 = f¿(0tJk,t,dP,yt,vkit).

 Again using standard nonseparable identification techniques and normaliza-
 tions, one can show that the reduced form /rf is identified. Instruments are
 unnecessary here, because the disturbance vkit is assumed to be independent
 of all other variables. However, to identify the technology fktS9 we need to dis-
 entangle the direct effect of #,,/&,„ and 6P on 0t+i from their indirect effect
 through 777 = Qkfât, 0P,yt, h,t)- To accomplish this, we exploit our knowledge

 of q~k]t(0t, dp, yt, /M) to write

 fk,s(Qt, h,t, Op, 77,, vktt) = fkiS(dt, lkit, Op, yt, vk,t)'yt:q-it{et,eP,yt,ikit)=7rt>

 where, on the right-hand side, we set yt so that the corresponding implied value
 of 77, matches its value on the left-hand side. This does not necessarily require
 q~k'(0t, 6p, yt, Iktt) to be invertible with respect to yt, since we only need one
 suitable value of yt for each given (0,, 0P, IkJ, 77,) and do not necessarily re-
 quire a one-to-one mapping. By construction, the support of the distribution
 of yt conditional on 0t,0P, and IkJ, is sufficiently large to guarantee the exis-
 tence of at least one solution, because, for a fixed 0t, Ikit, and 0P, variations in
 77, are entirely due to yt. We present a more formal discussion of our identifi-
 cation strategy in Appendix A3.3.

 In our empirical analysis, we make further parametric assumptions regard-
 ing fk,s and qkyt, which open the way to a more convenient estimation strat-
 egy to account for endogeneity. The idea is to assume that the function
 qk,t(Ot, Op, yt, 77,) is parametrically specified and additively separable in 77,, so
 that its identification follows under standard instrumental variables conditions.

 Next, we replace Ikit by its value given by the policy function in the technol-
 ogy:

 0k,t+i = fk,s(0t, qk,t(Ot, Op, yt, 77,), 0P, 77,, vktt).

 Eliminating IkJ solves the endogeneity problem because the two disturbances
 77, and vkit are now independent of all explanatory variables, by assumption if
 the 77, are serially independent. Identification is secured by assuming that fktS

 28 Complete regularity conditions along with a proof are presented in Appendix A3.3.
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 is parametric and additively separable in vk¿ (whose conditional mean is zero)
 and by assuming a parametric form for /^(tt,), the density of 777. We can then
 write

 E[0ktt+1'et9eP9yt]

 = / fkAOt, qicAOt, Op, yt, 77,), dp, irt,O)fnt(irt) d>nt

 = fkA0t,Op,yt,ß).

 The right-hand side is now known up to a vector of parameters ß which will be

 (at least) locally identified if it happens that dfkA^t, 0P,yt, ß)/dß evaluated
 at the true value of ß is a vector function of 0,, 6P,yt that is linearly inde-
 pendent. Section 4.2.5 below describes the specific functional forms used in
 our empirical analysis, and relaxes the assumption of serial independence of
 the 77V.

 4. ESTIMATING THE TECHNOLOGY OF SKILL FORMATION

 Technology (2.1) and the associated measurement systems are nonparamet-
 rically identified. However, we use parametric maximum likelihood to estimate
 the model and do not estimate it under the most general conditions. We do
 this for two reasons. First, a fully nonparametric approach is too data hun-
 gry to apply to samples of the size that we have at our disposal, because the
 convergence rates of nonparametric estimators are quite slow. Second, solv-
 ing a high-dimensional dynamic factor model is a computationally demanding
 task that can only be made manageable by invoking parametric assumptions.
 Nonetheless, the analysis of this paper shows that, in principle, the parametric
 structure used to secure the estimates reported below is not strictly required
 to identify the technology. The likelihood function for the model is presented
 in Appendix A5. Appendix A6 describes the nonlinear filtering algorithm we
 use to estimate the technology. Appendix A7 discusses how we implement an-
 choring. Appendix A8 reports a limited Monte Carlo study of a version of the
 general estimation strategy discussed in Section 4.2.5 below.

 We estimate the technology on a sample of 2207 firstborn white children
 from the Children of the NLSY/79 (CNLSY/79) sample. (See Center for
 Human Resource Research (2004).) Starting in 1986, the children of the
 NLSY/1979 female respondents, ages 0-14, have been assessed every 2 years.
 The assessments measure cognitive ability, temperament, motor and social de-
 velopment, behavior problems, and self-competence of the children as well as
 their home environments. Data are collected via direct assessment and ma-

 ternal report during home visits at every biannual wave. Appendix A9 dis-
 cusses the measurements used to proxy investment and output. Appendix Ta-
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 bles A9-1-A9-3 present summary statistics on the sample we use.29 We esti-
 mate a model for a single child, and ignore interactions among children and
 the allocation decisions of multiple child families.

 To match the biennial data collection plan, in our empirical analysis, a period
 is equivalent to 2 years. We have eight periods distributed over two stages of
 development.30 We report estimates for a variety of specifications.

 Dynamic factor models allow us to exploit the wealth of measures on invest-
 ment and outcomes available in the CNLSY data. They solve several problems
 in estimating skill formation technologies. First, there are many proxies for
 parental investments in children's cognitive and noncognitive development.
 Using a dynamic factor model, we let the data pick the best combinations
 of family input measures that predict levels and growth in test scores. Mea-
 sured inputs that are not very informative on family investment decisions will
 have negligible estimated factor loadings. Second, our models help us solve
 the problem of missing data. Assuming that the data are missing at random,
 we integrate out the missing items from the sample likelihood.

 In practice, we cannot empirically distinguish investments in cognitive skills
 from investments in noncognitive skills. Accordingly, we assume investment in
 period t is the same for both skills, although it may have different effects on
 those skills. Thus we assume Ic,t = In,í and define it as /,.

 4.1. Empirical Specification

 We use the separable measurement system (3.1). We estimate versions of the
 technology (2.3)-(2.4) augmented to include shocks,

 (4.1) 0ik,í+i = [ya.ioo +Ta,20jí

 where ysXl > 0 and £*=1 ysXl = l,ke {C, N], t e {1, 2}, s e {1, 2}. We assume
 that the innovations are normally distributed: 7]kt ~ N(0, S2 5). We further as-
 sume that the t^,, are serially independent over all t and are independent of

 29While we have rich data on home inputs, the information on schooling inputs is not so rich.
 Consistent with results reported in Todd and Wolpin (2005), we find that the poorly measured
 schooling inputs in the CNLSY are estimated to have only weak and statistically insignificant
 effects on outputs. Even correcting for measurement error, we find no evidence for important
 effects of schooling inputs on child outcomes. This finding is consistent with the Coleman Report
 (1966) that finds weak effects of schooling inputs on child outcomes once family characteristics
 are entered into an analysis. We do not report estimates of the model which include schooling
 inputs.

 30The first period is age 0, the second period is ages 1-2, the third period covers ages 3-4, and
 so on until the eighth period in which children are 13-14 years old. The first stage of development
 starts at age 0 and finishes at ages 5-6, while the second stage of development starts at ages 5-6
 and finishes at ages 13-14.
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 r¡ít for k ^ Í. We assume that measurements Za ,k tttj proxy the natural loga-
 rithms of the factors. In the text, we report only anchored results.31 For exam-
 ple, for a - ',

 Zl,k,t,j - MU,'J + al,k,t,j 'n 0*,í + ehk,tj,

 je{l9...9Matktt},te{l,...,T}9ke{C,N}.

 We use the factors (and not their logarithms) as arguments of the technology.32
 This keeps the latent factors nonnegative, as is required for the definition of
 technology (4.1). Collect the s terms for period t into a vector et. We assume
 that st ~ N(0, At), where At is a diagonal matrix. We impose the condition
 that et is independent from et> for t^t' and all rj^r+i. Define the tth row of 6
 as 6rn where r stands for row. Thus

 In fft = (In 0Cíí, In 0^,, In/,, In 0CP, In dNjP, In tt).

 Identification of this model follows as a consequence of Theorems 1 and 2
 and results in Matzkin (2003, 2007). We estimate the model under different
 assumptions about the distribution of the factors. Under the first specification,
 In drt is normally distributed with mean zero and variance-covariance matrix Xt.
 Under the second specification, In Q' is distributed as a mixture of T normals.
 Let (/>(x; jLt/T, Xt,T) denote the density of a normal random variable with mean
 lLtiT and variance-covariance matrix Xt,T- The mixture of normals writes the
 density of In 6rt as

 T

 /Kin ff¡) = J2 «>T</>(ln er-, fi,,T, X,,T)
 T=l

 subject to Y^=' <*>t = 1 and Y^=i MT^t,r = 0.
 Our anchored results allow us to compare the productivity of investments

 and stocks of different skills at different stages of the life cycle on the anchored
 outcome. In this paper, we mainly use completed years of education by age 19,
 a continuous variable, as an anchor.

 4.2. Empirical Estimates

 This section presents results from an extensive empirical analysis that esti-
 mates the multistage technology of skill formation, accounting for measure-
 ment error, nonnormality of the factors, endogeneity of inputs, and family

 31 Appendix Al 1.1 compares anchored and unanchored results.
 32We use five regressors (X) for every measurement equation: a constant, the age of the child

 at the assessment date, the child's gender, a dummy variable if the mother was less than 20 years
 old at the time of the first birth, and a cohort dummy (1 if the child was born after 1987 and 0
 otherwise).
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 investment decisions. The plan of this section is as follows. We first present
 baseline two-stage models that anchor outcomes in terms of their effects on
 schooling attainment, that correct for measurement errors, and that assume
 that the factors are normally distributed. These models do not account for en-
 dogeneity of inputs through unobserved heterogeneity components or family
 investment decisions. The baseline model is far more general than what is pre-
 sented in previous research on the formation of child skills that uses unan-
 chored test scores as outcome measures and does not account for measure-

 ment error.33

 We present evidence on the first-order empirical importance of measure-
 ment error. When we do not correct for it, the estimated technology suggests
 that there is no effect of early investment on outcomes. Controlling for endo-
 geneity of family inputs by accounting for unobserved heterogeneity (77) and
 accounting explicitly for family investment decisions has substantial effects on
 estimated parameters.

 The following empirical regularities emerge across all models that account
 for measurement error.34 Self-productivity of skills is greater in the second
 stage than in the first stage. Noncognitive skills are cross-productive for cog-
 nitive skills in the first stage of production. The cross-productivity effect is
 weaker and less precisely determined in the second stage. There is no evidence
 for a cross-productivity effect of cognitive skills on noncognitive skills at either
 stage. The estimated elasticity of substitution for inputs in cognitive skill is sub-
 stantially lower in the second stage of a child's life cycle than in the first stage.
 For noncognitive skills, the elasticity in the second period is slightly higher for
 models that control for unobserved heterogeneity (tt). These estimates suggest
 that it is easier to redress endowment deficits that determine cognition in the
 first stage of a child's life cycle than in the second stage. For socioemotional
 (noncognitive) skills, the opposite is true. For cognitive skills, the productiv-
 ity parameter associated with parental investment (yi,c,3) is greater in the first
 stage than in the second stage (y2,c,3)- For noncognitive skills, the pattern of
 estimates for the productivity parameter across models is less clear-cut, but
 there are not dramatic differences across the stages. For both outputs, the pa-
 rameter associated with the effect of parental noncognitive skills on output is
 smaller at the second stage than the first stage.

 Appendix All discusses the sensitivity of estimates of a one-stage two-skill
 model to alternative anchors and to allowing for nonnormality of the factors.
 For these and other estimated models which are not reported, allowing for
 nonnormality has only minor effects on the estimates. However, anchoring af-

 33 An example is the analysis of Fryer and Levitt (2004).
 34 Estimated parameters are reported in Appendix AIO.
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 fects the estimates.35 To facilitate computation, we use years of schooling at-
 tained as the anchor in all of the models reported in this section of the paper.36

 4.2.1. The Baseline Specification

 Table I presents evidence on our baseline two-stage model of skill formation.
 Outcomes are anchored in years of schooling attained. Factors are assumed to
 be normally distributed and we ignore heterogeneity (tt). The estimates show
 that for both skills, self-productivity increases in the second stage. Noncogni-
 tive skills foster cognitive skills in the first stage, but not in the second stage.
 Cognitive skills have no cross-productivity effect on noncognitive skills at ei-
 ther stage.37 The productivity parameter for investment is greater in the first
 period than in the second period for either skill. The difference across stages
 in the estimated parameters is dramatic for cognitive skills. The variability in
 the shocks is greater in the second period than in the first period. The elasticity
 of substitution for cognitive skills is much greater in the first period than in the
 second period. However, the estimated elasticity of substitution is about the
 same in both stages of production.

 For cognitive skill production, the parental cognitive skill parameter is about
 the same in both stages. The opposite is true for parental noncognitive skills.
 In producing noncognitive skills, parental cognitive skills play no role in the
 second stage. Parental noncognitive skills play a strong role in stage 1 and a
 weaker role in stage 2.

 4.2.2. The Empirical Importance of Measurement Error

 Using our estimated factor model, we can investigate the extent of measure-
 ment error on each measure of skill and investment in our data. To simplify the
 notation, we keep the conditioning on the regressors implicit and, without loss
 of generality, consider the measurements on cognitive skills in period t. For
 linear measurement systems, the variance can be decomposed as

 Var(ZlfCf^) = <Cfity Var(lnflc,f) + Var(elïCfrf;).

 The fractions of the variance of Zitc,t¿ due to measurement error, sex c t ;, and
 true signal, s*c>/¿ are, respectively,

 SlM

 35 Cunha and Heckman (2008) show the sensitivity of the estimates to alternative anchors for a
 linear model specification.

 36The normalizations for the factors are presented in Appendix AIO.
 37 Zero values of coefficients in this and other tables arise from the optimizer attaining a bound-

 ary of zero in the parameter space.
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 TABLE I

 Using the Factor Model to Correct for Measurement Error: Linear Anchoring

 on Educational Attainment (Years of Schooling); No Unobserved
 Heterogeneity (tt), Factors Normally Distributed3

 First Stage Second Stage
 Parameters Parameters

 The Technology of Cognitive Skill Formation
 Current Period Cognitive Skills y1>C;1 ' ' 0.487 y2,c,i ' ' 0.902
 (Self-Productivity) ' ' (0.030) ' ' (0.014)

 Current Period Noncognitive Skills yxx,i 0.083 y2,c,2 0.011
 (Cross-Productivity) (0.026) (0.005)

 Current Period Investments yxc?> 0.231 y2C3 ' ' 0.020
 (0.024) ' ' (0.006)

 Parental Cognitive Skills yiC4 0.050 y2C4 ' ' 0.047
 (0.013) ' ' (0.008)

 Parental Noncognitive Skills yx c 5 0.148 y2 ' c ' s 0.020
 (0.030) ' ' (0.010)

 Complementarity Parameter <(>1)C 0.611 <f>2,c ' -1.373
 (0.240) ' (0.168)

 Implied Elasticity of Substitution 1/(1 - 0i,c) 2.569 1/(1 - <t>2,c) °-421

 Variance of Shocks r)C,t S21C 0.165 ò'c 0.097
 (0.007) ' (0.003)

 The Technology of Noncognitive Skill Formation
 Current Period Cognitive Skills yltNtl 0.000 y2,Au 0.008
 (Cross-Productivity) (0.025) (0.010)

 Current Period Noncognitive Skills 7i,tf,2 ' ' 0.649 yi,N,i ' ' 0.868
 (Self-Productivity) ' ' (0.034) ' ' (0.011)

 Current Period Investments 7i w 3 0.146 y2 ' # ' 3 0.055
 (0.027) ' ' (0.013)

 Parental Cognitive Skills yhNA 0.022 y2fNA ' ' 0.000
 (0.011) ' ' (0.007)

 Parental Noncognitive Skills 71^5 0.183 y2N5 ' ' 0.069
 (0.031) ' ' (0.017)

 Complementarity Parameter </>i N -0.674 (f>2 ' n -0.695
 (0.324) ' (0.274)

 Implied Elasticity of Substitution 1/(1 - 01,*) 0.597 1/(1 - 4>2,N) 0.590

 Variance of Shocks t^,, 6' N 0.189 ò'N 0.103
 (0.012) ' (0.004)

 a Standard errors in parentheses.
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 and

 ''■^"«ic^Vardnoc^ + Var^c,,,) (Slgnal)'

 For each measure of skill and investment used in the estimation, we con-

 struct selCtj and seh CtJ which are reported in Table II A. Note that the early
 proxies tend to have a higher fraction of observed variance due to measure-
 ment error. For example, the measure that contains the lowest true signal ratio
 is the MSD (Motor and Social Developments Score) at year of birth, in which
 less than 5% of the observed variance is signal. The proxy with the highest sig-
 nal ratio is the PIAT Reading Recognition Scores at ages 5-6, for which almost
 96% of the observed variance is due to the variance of the true signal. Overall,
 about 54% of the observed variance is associated with the cognitive skill factors

 Table IIA also shows the same ratios for measures of childhood noncognitive
 skills. The measures of noncognitive skills tend to be lower in informational
 content than their cognitive counterparts. Overall, less than 40% of the ob-
 served variance is due to the variance associated with the factors for noncog-
 nitive skills. The poorest measure for noncognitive skills is the "Sociability"
 measure at ages 3-4, in which less than 1% of the observed variance is signal.
 The richest is the "Behavior Problem Index (BPI) Headstrong" score, in which
 almost 62% of the observed variance is due to the variance of the signal.

 Table IIA also presents the signal-noise ratio of measures of parental cog-
 nitive and noncognitive skills. Overall, measures of maternal cognitive skills
 tend to have a higher information content than measures of noncognitive skills.
 While the poorest measurement on cognitive skills has a signal ratio of almost
 35%, the richest measurements on noncognitive skills are slightly above 40%.
 Analogous estimates of signal and noise for our investment measures are

 reported in Table IIB. Investment measures are much noisier than either mea-
 sure of skill. The measures for investments at earlier stages tend to be noisier
 than the measures at later stages. It is interesting to note that the measure
 "Number of Books" has a high signal-noise ratio at early years, but not in later
 years. At earlier years, the measure "How Often Mom Reads to the Child" has
 about the same informational content as "Number of Books." In later years,
 measures such as "How Often Child Goes to the Museum" and "How Often
 Child Goes to Musical Shows" have higher signal-noise ratios.

 These estimates suggest that it is likely to be empirically important to control
 for measurement error in estimating technologies of skill formation. A general
 pattern is that at early ages compared to later ages, measures of skill tend to
 be riddled with measurement error, while the reverse pattern is true for the
 measurement errors for the proxies for investment.
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 4.2.3. The Effect of Ignoring Measurement Error on the Estimated Technology

 We now demonstrate the impact of neglecting measurement error on esti-
 mates of the technology. To make the most convincing case for the importance
 of measurement error, we use the least error-prone proxies as determined in
 our estimates of Tables IIA and IIB.38 We continue to assume no heterogene-
 ity.

 Not accounting for measurement error has substantial effects on the esti-
 mated technology. Comparing the estimates in Table III with those in Table I,
 the estimated first stage investment effects are much less precisely estimated
 in a model that ignores measurement errors than in a model that corrects
 for them. In the second stage, the estimated investment effects are generally
 stronger. Unlike all of the specifications that control for measurement error,
 we estimate strong cross-productivity effects of cognitive skills on noncognitive
 skill production. As in Table I, there are cross-productivity effects of noncogni-
 tive skills on cognitive skills at both stages, although the estimated productivity
 parameters are somewhat smaller. The estimated elasticities of substitution for
 cognitive skills at both stages are comparable across the two specifications. The
 elasticities of substitution for noncognitive skills are substantially lower at both
 stages in the specification that does not control for measurement error. The er-
 ror variances of the shocks are substantially larger. Parental cognitive skills are
 estimated to have substantial effects on childhood cognitive skills, but not on
 their noncognitive skills. This contrasts with the estimates reported in Table I
 that show strong effects of parental noncognitive skills on childhood cognitive
 skills in both stages, and on noncognitive skills in the first stage.

 4.2.4. Controlling for Time-Invariant Unobserved Heterogeneity
 in the Estimated Technology

 We next consider the effect of controlling for unobserved heterogeneity in
 the model, with estimates reported in Table I. We follow the method dis-
 cussed in Section 3.6.1. Doing so allows for endogeneity of the inputs. We
 break the error term for the technology into two parts: a time-invariant un-
 observed heterogeneity factor it that is correlated with the vector (dt,It,dP)
 and an i.i.d. error term vktt that is assumed to be uncorrelated with all other
 variables.

 38 At birth we use Cognitive Skill: Weight at Birth, Noncognitive Skill: Temperament/Difficulty
 Scale, Parental Investment: Number of Books. At ages 1-2 we use Cognitive Skill: Body Parts,
 Noncognitive Skill: Temperament/Difficulty Scale, Parental Investment: Number of Books. At
 ages 3-4 we use Cognitive Skill: Peabody Picture Vocabulary Test (PPVT), Noncognitive Skill:
 BPI Headstrong, Parental Investment: How Often Mom Reads to Child. At ages 5-6 to ages 13-
 14 we use Cognitive Skill: Reading Recognition, Noncognitive Skill: BPI Headstrong, Parental
 Investment: How Often Child Goes to Musical Shows. Maternal Skills are time invariant: For

 Maternal Cognitive Skill: ASVAB Arithmetic Reasoning, for Maternal Noncognitive Skill: Self-
 Esteem item: "I am a failure."
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 TABLE III

 The Technology for Cognitive and Noncognitive Skill Formation:

 Not Correcting for Measurement Error; Linear Anchoring on Educational
 Attainment (Years of Schooling); No Unobserved Heterogeneity (tt);

 Factors Normally Distributed3

 First Stage Second Stage
 Parameters Parameters

 Panel A: Technology of Cognitive Skill Formation (Next Period Cognitive Skills)
 Current Period Cognitive Skills ylcl ' ' 0.403 y2,c,i 0.657
 (Self-Productivity) ' ' (0.058) (0.013)

 Current Period Noncognitive Skills yhca ' ' 0.218 y2,C)2 ' ' 0.009
 (Cross-Productivity) ' ' (0.105) ' ' (0.005)

 Current Period Investments yic3 0.067 72 ' c ' 3 0.167
 (0.090) ' ' (0.018)

 Parental Cognitive Skills y1>Ci4 0.268 y2,c,4 0.047
 (0.078) (0.009)

 Parental Noncognitive Skills yiC5 0.044 y2,c,5 0.119
 (0.050) (0.150)

 Complementarity Parameter </>i c 0.375 </>2 ' c -0.827
 (0.294) ' (0.093)

 Implied Elasticity of Substitution 1/(1 - 0lfC) 1.601 1/(1 - <¿>2,c) 0.547

 Variance of Shocks r'Ct 8'c 0.941 8'c ' 0.358
 (0.048) ' (0.006)

 Panel B: Technology of Noncognitive Skill Formation (Next Period Noncognitive Skills)
 Current Period Cognitive Skills y1>AU ' 0.193 y2,N,' 0.058
 (Cross-Productivity) ' (0.095) (0.014)

 Current Period Noncognitive Skills J'ni ' ' 0.594 y2 ' n ' 2 0.638
 (Self-Productivity) ' ' (0.090) ' ' (0.020)

 Current Period Investments yi^3 0.099 y2N3 ' ' 0.239
 (0.296) ' ' (0.031)

 Parental Cognitive Skills y1N4 0.114 y2N4 ' ' 0.065
 (0.055) ' ' (0.015)

 Parental Noncognitive Skills yi n 5 0.000 y2 ' # ' 5 0.000
 (0.821) ' ' (0.203)

 Complementarity Parameter </>itN -0.723 (t>2,N -0.716
 (0.441) (0.127)

 Implied Elasticity of Substitution 1/(1 - <t>hN) 0.580 1/(1 - <f>2,N) 0.583

 Variance of Shocks t^,, 8' n 0.767 8'N 0.597
 (0.076) ' (0.017)

 a Standard errors in parentheses.
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 Table IV shows that correcting for heterogeneity, the estimated coefficients
 for parental investments have a greater impact on cognitive skills at the first
 stage. The coefficient on parental investment in the first stage is yi,c,3 = 0.16,
 while in the second stage y2,c,3 = 0.04. The elasticity of substitution in the first
 stage is well above 1, ahC = j^hn = 1A5, and in the second stage it is well
 below 1, (T2,c = 7^24 = 0-44- These estimates are statistically significantly dif-
 ferent from each other and from the estimates of the elasticities of substitution

 ahN and (T2,N'39 These results suggest that early investments are important in
 producing cognitive skills. Consistent with the estimates reported in Table I,
 noncognitive skills increase cognitive skills in the first stage, but not in the sec-
 ond stage. Parental cognitive and noncognitive skills affect the accumulation
 of childhood cognitive skills.

 Panel B of Table IV presents estimates of the technology of noncognitive
 skills. Note that, contrary to the estimates reported for the technology for cog-
 nitive skills, the elasticity of substitution increases slightly from the first stage
 to the second stage. For the early stage, a^ tN = 0.62, while for the late stage,
 cj1N = 0.65. The elasticity is about 50% higher for investments in noncogni-
 tive skills for the late stage in comparison to the elasticity for investments in
 cognitive skills. The estimates of aiN and a2,N are not statistically significantly
 different from each other, however.40 The impact of parental investments is
 about the same at early and late stages (ji,n,3 = 0.06 vs. y2,w,3 = 0.05). Parental
 noncognitive skills affect the accumulation of a child's noncognitive skills both
 in early and late periods, but parental cognitive skills have no effect on noncog-
 nitive skills at either stage. The estimates in Table IV show a strong effect of
 parental cognitive skills at both stages of the production of noncognitive skills.

 4.2.5. A More General Approach to Solving the Problem
 of the Endogeneity of Inputs

 This section relaxes the invariant heterogeneity assumption and reports em-
 pirical results from a more general model of time-varying heterogeneity. Our
 approach to estimation is motivated by the general analysis of Section 3.6.2,
 but, in the interest of computational tractability, we make parametric and dis-
 tributional assumptions.

 We augment the measurement system (3.1)- (3.3) by investment equa-
 tion (3.11), which is motivated by economic theory. Our investment equation
 is

 (4.2) /, = kc6c,t + kNeNtt + herdes + kNtP0NtP + kyyt + tt,.41

 39See Table A10-5.
 40See Table A10-5.
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 TABLE IV

 The Technology for Cognitive and Noncognitive Skill Formation:

 Linear Anchoring on Educational Attainment (Years of Schooling);
 Allowing for Unobserved Heterogeneity (tt);

 Factors Normally Distributed3

 First Stage Second Stage
 Parameters Parameters

 Panel A: Technology of Cognitive Skill Formation (Next Period Cognitive Skills)
 Current Period Cognitive Skills yi,c,i 0.479 y2,c,i 0-831
 (Self-Productivity) (0.026) (0.011)

 Current Period Noncognitive Skills yhC,i 0.070 y2,c,2 0.001
 (Cross-Productivity) (0.024) (0.005)

 Current Period Investments yiC3 0.161 y2c3 ' ' 0.044
 (0.015) ' ' (0.006)

 Parental Cognitive Skills yiC* 0.031 y2C4 ' ' 0.073
 (0.013) ' ' (0.008)

 Parental Noncognitive Skills y1>c>5 0.258 y2,c,5 ' ' 0.051
 (0.029) ' ' (0.014)

 Complementarity Parameter (f)iC 0.313 (f>2,c ' -1.243
 (0.134) ' (0.125)

 Implied Elasticity of Substitution 1/(1 - 01>c) 1.457 1/(1 - </>2,c) 0.446

 Variance of Shocks T/c,r 8'c 0.176 8'c 0.087
 (0.007) ' (0.003)

 Panel B: Technology of Noncognitive Skill Formation (Next Period Noncognitive Skills)
 Current Period Cognitive Skills y1>AU 0.000 y2,Au ' 0-000
 (Cross-Productivity) (0.026) ' (0.010)

 Current Period Noncognitive Skills 7',n,2 ' ' 0.585 72,n,2 ' ' 0.816
 (Self-Productivity) ' ' (0.032) ' ' (0.013)

 Current Period Investments 7i,yv,3 0.065 72,n,3 ' ' 0.051
 (0.021) ' ' (0.006)

 Parental Cognitive Skills yx N 4 0.017 y2N4 ' 0.000
 (0.013) ' (0.008)

 Parental Noncognitive Skills yi N 5 0.333 y2N5 ' ' 0.133
 (0.034) ' ' (0.017)

 Complementarity Parameter <j>ììN -0.610 4>2,n ' -0.551
 (0.215) ' (0.169)

 Implied Elasticity of Substitution 1/(1 - cf)hN) 0.621 1/(1 - </>2,N) 0.645

 Variance of Shocks^,, 8' N 0.222 8'N 0.101
 (0.013) ' (0.004)

 a Standard errors in parentheses.
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 We substitute (4.2) into equations (3.2) and (3.10). We specify the income
 process as

 (4.3) 'nyt = py'nyt-x + vy,t

 and the equation of motion for irt as

 (4.4) 77, = p777Ti_1+*V.

 We assume that vy¿ AL (0í',*v) for all t' / t and vyJ AL (yt>,vkyt,0P),
 t > f, k e {C,N}, where AL means independence. We further assume that
 iV, il (0,, 0p9 vKt>) and that (0uy') AL tt.42 In addition, vy,t ~ N(0, a2y) and
 Vir,t ~ N(0, al). In Appendix A8, we report favorable results from a Monte
 Carlo study of the estimator based on these assumptions.

 Table V reports estimates of this model.43 Allowing for time-varying het-
 erogeneity does not greatly affect the estimates from the model that assumes
 fixed heterogeneity reported in Table IV. In the results that we describe be-
 low, we allow the innovation irt to follow an AR(1) process and we estimate
 the investment equation qkJ along with all of the other parameters estimated
 in the model reported in Table IV.44 Estimates of the parameters of equa-
 tion (4.2) are presented in Appendix AIO. We also report estimates of the
 anchoring equation and other outcome equations in that appendix.45 When
 we introduce an equation for investment, the impact of early investments on
 the production of cognitive skill increases from j',c,3 = 0.17 (see Table IV,
 panel A) to y1>c,3 = 0.26 (see Table V, panel A). At the same time, the es-
 timated first stage elasticity of substitution for cognitive skills increases from
 ahC = 1/(1 - 0i,c) = 1.5 to (TUC = 1/(1 - (f>',c) = 2-4- Note that for this sp^-
 ification the impact of late investments in producing cognitive skills remains
 largely unchanged at y2,c,3 = 0.045 (compare Table IV, panel A, with Table V,
 panel A). The estimate of the elasticity of substitution for cognitive skill tech-
 nology is about the same as cr2,c - 1/(1 - <¿>2,c) = 0.44 (Table IV, panel A) and
 o"2C = 1/(1 - 02,c) = 0.45 (see Table V, panel A).

 We obtain comparable changes in our estimates of the technology for pro-
 ducing noncognitive skills. The estimated impact of early investments increases
 from ylfJVf3 = 0.065 (see Table IV, panel B) to yUNt3 = 0.209 (in Table V,

 41 The intercept of the equation is absorbed into the intercept of the measurement equation.
 42This assumption enables us to identify the parameters of equation (4.2).
 43Table A10-6 reports estimates of the parameters of the investment equation (4.2).
 44We model q as time invariant, linear, and separable in its arguments, although this is not a

 necessary assumption in our identification, but certainly helps to save on computation time and
 to obtain tighter standard errors for the policy function and the production function parameters.
 Notice that under our assumption Ic,t = lN,t = hi and time invariance of the investment function,
 it follows that qk t = qt = q for all t.

 45 We also report the covariance matrix for the initial conditions of the model in the Appendix.
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 TABLE V

 The Technology for Cognitive and Noncognitive Skill Formation Estimated

 Along With Investment Equation With Linear Anchoring on Educational

 Attainment (Years of Schooling); Factors Normally Distributed3

 First Stage Second Stage
 Parameters Parameters

 Panel A: Technology of Cognitive Skill Formation (Next Period Cognitive Skills)
 Current Period Cognitive Skills y1>c>1 ' ' 0.485 y2,c,i ' ' 0.884
 (Self-Productivity) ' ' (0.031) ' ' (0.013)

 Current Period Noncognitive Skills yi,c,2 ' ' 0.062 y2,c,2 ' ' 0.011
 (Cross-Productivity) ' ' (0.026) ' ' (0.005)

 Current Period Investments yijC,3 0.261 y2C3 ' ' 0.044
 (0.026) ' ' (0.011)

 Parental Cognitive Skills yx c,4 0.035 y2C4 ' ' 0.051
 (0.015) ' ' (0.008)

 Parental Noncognitive Skills ylfC>5 0.157 y2)C,5 ' ' 0.011
 (0.033) ' ' (0.012)

 Complementarity Parameter </>lc 0.585 <f>2,c ' -1.220
 (0.225) ' (0.149)

 Implied Elasticity of Substitution 1/(1 - 01>c) 2.410 1/(1 - 02,c) 0-450

 Variance of Shocks j)C,t à'c 0.165 8'c ' 0.098
 (0.007) ' (0.003)

 Panel B: Technology of Noncognitive Skill Formation (Next Period Noncognitive Skills)
 Current Period Cognitive Skills y1>AU 0.000 y2,N,' 0.002
 (Cross-Productivity) (0.028) (0.011)

 Current Period Noncognitive Skills 7i,n,2 ' ' 0.602 J2,n,i ' ' 0.857
 (Self-Productivity) ' ' (0.034) ' ' (0.011)

 Current Period Investments Ti,^,3 0.209 yiNi ' ' 0.104
 (0.031) ' ' (0.022)

 Parental Cognitive Skills yhNA 0.014 y2N4 ' ' 0.000
 (0.013) ' ' (0.008)

 Parental Noncognitive Skills 7i,n,5 0.175 72,n,5 ' ' 0.037
 (0.033) ' ' (0.021)

 Complementarity Parameter 4>hN -0.464 <j>2,n ' -0.522
 (0.263) ' (0.214)

 Implied Elasticity of Substitution 1/(1 - </>ltN) 0.683 1/(1 - <f)2,N) 0.657
 Variance of Shocks r)Nj 8'N 0.203 0^ 0.102

 (0.012) ' (0.003)

 a Standard errors in parentheses.
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 panel B). The elasticity of substitution for noncognitive skills in the early pe-
 riod rises, changing from ahN = 1/(1 - </>i,at) = 0.62 to ahN = 1/(1 - <£i,# ) =
 0.68 (in Table V, panel B). The estimated share parameter for late investments
 in producing noncognitive skills increases from 72,^,3 = 0.05 to y2,w,3 = 0.10.
 Compare Table IV, panel B with Table V, panel B. When we include an equa-
 tion for investments, the estimated elasticity of substitution for noncognitive
 skills slightly increases at the later stage, from a2,N = 1/(1 - 4>2,n) = 0.645 (in
 Table IV, panel B) to <r2tN = 1/(1 - (/)2,n) = 0.66 (in Table V, panel B), but
 this difference is not statistically significant. Thus, the estimated elasticities of
 substitution from the more general procedure show roughly the same pattern
 as those obtained from the procedure that assumes time-invariant heterogene-
 ity.46

 The general pattern of decreasing substitution possibilities across stages for
 cognitive skills and roughly constant or slightly increasing substitution possi-
 bilities for noncognitive skills is consistent with the literature on the evolution
 of cognitive and personality traits (see Borghans, Duckworth, Heckman, and
 ter Weel (2008), Shiner (1998), Shiner and Caspi (2003)). Cognitive skills sta-
 bilize early in the life cycle and are difficult to change later on. Noncognitive
 traits flourish, that is, more traits are exhibited at later ages of childhood and
 there are more possibilities (more margins to invest in) for compensation of
 disadvantage. For a more extensive discussion, see Appendix Al. 2.

 4.2.6. A Model Based Only on Cognitive Skills

 Most of the empirical literature on skill production focuses on cogni-
 tive skills as the output of family investment (see, e.g., Todd and Wolpin
 (2005, 2007) and the references they cite). It is of interest to estimate a more
 traditional model that ignores noncognitive skills and the synergism between
 cognitive and noncognitive skills and between investment and noncognitive
 skills in production. Appendix Table A14-1 reports estimates of a version of
 the model in Table IV, based on a model with time-invariant heterogeneity,
 where noncognitive skills are excluded from the analysis.

 The estimated self-productivity effect increases from the first stage to the
 second stage, as occurs with the estimates found for all other specifications
 estimated in this paper. However, the estimated first period elasticity of sub-
 stitution is much smaller than the corresponding parameter in Table IV. The
 estimated second period elasticity is slightly higher. The estimated productiv-
 ity parameters for investment are substantially higher in both stages of the
 model reported in Appendix Table A14-1, as are the productivity parameters
 for parental cognitive skills. We note in the next section that the policy im-
 plications from a cognitive-skill-only model are very different from the policy
 implications for a model with cognitive and noncognitive skills.

 46 We cannot reject the null hypothesis that aiiN = a2tN, but we reject the null hypothesis that
 o"i,c = tf2,c and that the elasticities of different skills are equal. See Table A10-7.
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 4.3. Interpreting the Estimates

 The major findings from our analysis of models with two skills that con-
 trol for measurement error and endogeneity of inputs are as follows: (a) Self-
 productivity becomes stronger as children become older, for both cognitive and
 noncognitive skill formation, (b) Complementarity between cognitive skills and
 investment becomes stronger as children become older. The elasticity of substi-
 tution for cognition is smaller in second stage production. It is more difficult to
 compensate for the effects of adverse environments on cognitive endowments
 at later ages than it is at earlier ages.47 This pattern of the estimates helps to
 explain the evidence on ineffective cognitive remediation strategies for disad-
 vantaged adolescents reported in Cunha, Heckman, Lochner, and Masterov
 (2006). (c) Complementarity between noncognitive skills and investments be-
 comes slightly weaker as children become older, but the estimated effects are
 not that different across stages of the life cycle. The elasticity of substitution
 between investment and current endowments increases slightly between the
 first stage and the second stage in the production of noncognitive skills. It is
 somewhat easier at later stages of childhood to remediate early disadvantage
 using investments in noncognitive skills.

 Using the estimates present in Table IV, we find that 34% of the variation in
 educational attainment in the sample is explained by the measures of cognitive
 and noncognitive capabilities that we use: 16% is due to adolescent cognitive
 capabilities; 12% is due to adolescent noncognitive capabilities.48 Measured
 parental investments account for 15% of the variation in educational attain-
 ment. These estimates suggest that the measures of cognitive and noncogni-
 tive capabilities that we use are powerful, but not exclusive, determinants of
 educational attainment and that other factors, besides the measures of fam-
 ily investment that we use, are at work in explaining variation in educational
 attainment.

 To examine the implications of these estimates, we analyze a standard social
 planning problem that can be solved solely from knowledge of the technology
 of skill formation and without knowledge of parental preferences and parental
 access to lending markets. We determine optimal allocations of investments
 from a fixed budget to maximize aggregate schooling for a cohort of children.
 We also consider a second social planning problem that minimizes aggregate
 crime. Our analysis assumes that the state has full control over family invest-
 ment decisions. We do not model parental investment responses to the policy.
 These simulations produce a measure of the investment that is needed from
 whatever source to achieve the specified target.

 Suppose that there are H children indexed by h e {1, . . . , H}. Let (0c,i,ã,
 0N,i,h) denote the initial cognitive and noncognitive skills of child h. She has

 47This is true even in a model that omits noncognitive skills.
 48The skills are correlated so the marginal contributions of each skill do not add up to 34%.

 The decomposition used to produce these estimates is discussed in Appendix A12.
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 parents with cognitive and noncognitive skills denoted by 6c,p,h and 6NfPjh, re-
 spectively. Let 7Th denote additional unobserved determinants of outcomes.
 Denote 0lth = (ec,u, 6NXh, dc,P,h, 0NtPth, 7rh) and let F(6hh) denote its distri-
 bution. We draw H people from the estimated initial distribution F(dhh). We
 use the estimates reported in Table IV in this simulation. The key substitution
 parameters are basically the same in this model and the more general model
 with estimates reported in Table V.49 The price of investment is assumed to be
 the same in each period.

 The social planner maximizes aggregate human capital subject to a budget
 constraint B = 2H, so that the per capita budget is 2 units of investment. We
 draw H children from the initial distribution F(6hh), and solve the problem of
 how to allocate finite resources 2H to maximize the average education of the
 cohort. Formally, the social planner maximizes aggregate schooling

 1 H
 maxS = -V]S(6c,3,h, 0;v,3,a, ^a),

 subject to the aggregate budget constraint
 H

 (4.5) ^(/1)A+/2,A) = 2//,
 h='

 the technology constraint

 6k,t+',h = fk,t(0c,t,h> 0N,t,h> Qc,P,h, 0N,P,h> ^h)

 for fce{C,A0andi€{l,2},

 and the initial endowments of the child and her family. We assume no dis-
 counting. Solving this problem, we obtain optimal early and late investments,
 Ihh and I2th, respectively, for each child h. An analogous social planning prob-
 lem is used to minimize crime.

 Figures 2 (for the child's personal endowments) and 3 (for maternal en-
 dowments) show the profiles of early (left-hand side graph) and late (right-
 hand side graph) investment as a function of child and maternal endowments.
 (Lighter shading corresponds to higher values of investment.) Endowments are
 measured in units of standard deviations from the means. In each figure, the
 endowments not plotted are fixed at sample mean values. The optimal policy
 is to invest relatively more in the disadvantaged compared to the advantaged
 in the early years. Moon (2009) shows that, in actuality, society and family to-
 gether invest much more in the early years of the advantaged compared to
 the disadvantaged. The decline in investment by level of advantage is dramatic

 49Simulation from the model of Section 3.6.2 (with estimates reported in Section 4.2.5) that has
 time-varying child quality is considerably more complicated because of the high dimensionality
 of the state space. We leave this for another occasion.
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 Figure 2. - Optimal early (left) and late (right) investments by child initial conditions of cog-
 nitive and noncognitive skills maximizing aggregate education (other endowments held at mean
 levels).

 Figure 3. - Optimal early (left) and late (right) investments by maternal cognitive and
 noncognitive skills maximizing aggregate education (other endowments held at mean levels).
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 Figure 4.- Ratio of early to late investments by child initial conditions of cognitive and
 noncognitive skills maximizing aggregate education (left) and minimizing aggregate crime (right)
 (other endowments held at mean levels).

 for early investment. Second period investment profiles are much flatter and
 slightly favor relatively more investment in more advantaged children. A sim-
 ilar profile emerges for investments to reduce aggregate crime, which for the
 sake of brevity, we do not display.

 Figures 4 and 5 reveal that the ratio of optimal early to late investment as a
 function of the child's personal endowments declines with advantage whether
 the social planner seeks to maximize educational attainment (left-hand side)
 or to minimize aggregate crime (right-hand side). A somewhat similar pattern
 emerges for the optimal ratio of early to late investment as a function of ma-
 ternal endowments with one interesting twist. The optimal investment ratio is
 nonmonotonic in the mother's cognitive skill for each level of her noncognitive
 skills. At very low or very high levels of maternal cognitive skills, it is better to
 invest relatively more in the second period than if the mother's cognitive en-
 dowment is at the mean.

 The optimal ratio of early to late investment depends on the desired out-
 come, the endowments of children, and the budget. Figure 6 plots the density
 of the optimal ratio of early to late investment for education and crime.50 For

 50The optimal policy is not identical for each h and depends on 6hh, which varies in the popula-
 tion. The education outcome is the number of years of schooling attainment. The crime outcome
 is whether or not the individual has been on probation. Estimates of the coefficients of the out-
 come equations including those for crime are reported in Appendix AIO.
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 Figure 5. - Ratio of early to late investments by maternal cognitive and noncognitive skills
 maximizing aggregate education (left) and minimizing aggregate crime (right) (other endow-
 ments held at mean levels).
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 Figure 6. - Densities of ratio of early to late investments maximizing aggregate education
 versus minimizing aggregate crime.
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 both outcomes and for most initial endowments, it is optimal to invest relatively
 more in the first stage. Crime is more intensive in noncognitive skills than ed-
 ucational attainment, which depends much more strongly on cognitive skills.
 Because compensation for adversity in cognitive skills is much more costly in
 the second stage than in the first stage, it is efficient to invest relatively more
 in cognitive traits in the first stage relative to the second stage to promote ed-
 ucation. Because crime is more intensive in noncognitive skills and for such
 skills the increase in second stage compensation costs is less steep, the optimal
 policy for preventing crime is relatively less intensive in first stage investment.

 These simulations suggest that the timing and level of optimal interventions
 for disadvantaged children depend on the conditions of disadvantage and the
 nature of desired outcomes. Targeted strategies are likely to be effective espe-
 cially for different targets that weight cognitive and noncognitive traits differ-
 ently.51

 4.3.1. Some Economic Intuition That Explains the Simulation Results

 This subsection provides an intuition for the simulation results just dis-
 cussed. Given the (weak) complementarity implicit in technology (2.3) and
 (2.4), how is it possible to obtain our result that it is optimal to invest rela-
 tively more in the early years of the most disadvantaged? The answer hinges
 on the interaction between different measures of disadvantage.

 Consider the following example, where individuals have a single capability,
 0. Suppose that there are two children, A and B, born with initial skills Of
 and of, respectively. Let dp and Of denote the skills of the parents A and
 B, respectively. Suppose that there are two periods for investment, which we
 denote by periods 1 (early) and 2 (late). For each period, there is a different
 technology that produces skills. Assume that the technology for period 1 is

 02 = yi0i + y2/i + (1 - yi - 72)0p;

 for period 2 it is

 03 = min{02,/2, Op).

 These patterns of complementarity are polar cases that represent, in extreme
 form, the empirical pattern found for cognitive skill accumulation: that substi-
 tution possibilities are greater early in life compared to later in life.

 The problem of society is to choose how much to invest in child A and child
 B in periods 1 and 2 to maximize total aggregate skills, Of + 0f , subject to the

 51 Appendix Al 3 presents additional simulations of the model for an extreme egalitarian cri-
 terion that equalizes educational attainment across all children. We reach the same qualitative
 conclusions about the optimality of differentially greater investment in the early years for disad-
 vantaged children.
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 resource constraint If +l£ +/f + /f < M, where M is total resources available
 for investment. Formally, the problem is

 r min{7lé^ + y2lf + (1 - 71 - 72)6^, d¿) l
 (4.6) max

 L + min{71öf + y2/f + (l-y1-y2)e?,/f,ö?}J

 subject to If+If+I* + I*<M.

 When the resource constraint in (4.6) does not bind, which it does not if M
 is above a certain threshold (determined by dP), optimal investments are

 TA_ (yi + y2)0t-yi0f rB _ (n + y2)gg-yief
 72 72

 Notice that if child A is disadvantaged compared to B on both measures of
 disadvantage (of < of and dp < 6p), it can happen that

 If>lf, but I?<I%

 if

 ^-o?>-^-(Oíí-ef)- + 71 + 72

 Thus, if parental endowment differences are less negative than child endow-
 ment differences (scaled by 71/(71 + 72)), it is optimal to invest more in the
 early years for the disadvantaged and less in the later years. Notice that since
 (1 - yi - y2) = Jp is the productivity parameter on 6P in the first period tech-
 nology, we can rewrite this condition as {Of - 9p) > 7i/(l - yp)(6f - of ). The
 higher the self -productivity (71) and the higher the parental environment pro-
 ductivity, 7p, the more likely will this inequality be satisfied for any fixed level
 of disparity.

 4.4. Implications of a One Cognitive Skill Model

 Appendix A14.1 considers the policy implications of the social planner's
 problem from our estimates of a model formulated solely in terms of cogni-
 tive skills. This is the traditional focus in the analysis of educational production
 functions. (See, e.g., Todd and Wolpin (2003, 2007) and Hanushek and Woess-
 mann (2008).) The optimal policy is to invest relatively more in the early years
 of the initially advantaged. Our estimates of two-stage and one-stage models
 based solely on cognitive skills would indicate that it is optimal to perpetu-
 ate initial inequality and not to invest relatively more in disadvantaged young
 children.
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 5. CONCLUSION

 This paper formulates and estimates a multistage model of the evolution of
 children's cognitive and noncognitive skills as determined by parental invest-
 ments at different stages of the life cycle of children. We estimate the elasticity
 of substitution between contemporaneous investment and stocks of skills in-
 herited from previous periods and determine the substitutability between early
 and late investments. We also determine the quantitative importance of early
 endowments and later investments in determining schooling attainment. We
 account for the proxy nature of the measures of parental inputs and of outputs,
 and find evidence for substantial measurement error which, if not accounted
 for, leads to badly distorted characterizations of the technology of skill for-
 mation. We establish nonparametric identification of a wide class of nonlinear
 factor models which enables us to determine the technology of skill formation.
 We present an analysis of the identification of production technologies with
 endogenous missing inputs that is more general than the replacement function
 analysis of Olley and Pakes (1996) and allows for measurement error in the
 proxy variables.52 A by-product of our approach is a framework for the evalu-
 ation of childhood interventions that avoids reliance on arbitrarily scaled test
 scores. We develop a nonparametric approach to this problem by anchoring
 test scores in adult outcomes with interpretable scales.

 Using measures of parental investment and children's outcomes from the
 Children of the National Longitudinal Survey of Youth, we estimate the para-
 meters that govern the substitutability between early and late investments in
 cognitive and noncognitive skills. In our preferred empirical specification, we
 find much less evidence of malleability and substitutability for cognitive skills
 in later stages of a child's life cycle, while malleability for noncognitive skills is
 about the same at both stages. These estimates are consistent with the evidence
 reported in Cunha, Heckman, Lochner, and Masterov (2006).

 These estimates imply that successful adolescent remediation strategies for
 disadvantaged children should focus on fostering noncognitive skills. Invest-
 ments in the early years are important for the formation of adult cognitive
 skills. Furthermore, policy simulations from the model suggest that there is
 no trade-off between equity and efficiency. The optimal investment strategy to
 maximize aggregate schooling attainment or to minimize aggregate crime is to
 target the most disadvantaged at younger ages.

 Accounting for both cognitive and noncognitive skills makes a difference. An
 empirical model that ignores the impact of noncognitive skills on productivity
 and outcomes yields the opposite conclusion that an economically efficient pol-
 icy that maximizes aggregate schooling would perpetuate initial advantages.

 52See Heckman and Robb (1985), Heckman and Vytlacil (2007), and Matzkin (2007) for a
 discussion of replacement functions.
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