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Research Summary

There is a substantial and powerful literature in statistics and computer
science clearly demonstrating that modern machine learning procedures can
forecast more accurately than conventional parametric statistical models such
as logistic regression. Yet, several recent studies have claimed that for crimi-
nal justice applications, forecasting accuracy is about the same. In this paper,
we address the apparent contradiction. Forecasting accuracy will depend on
the complexity of the decision boundary. When that boundary is simple,
most forecasting tools will have similar accuracy. When that boundary is
complex, procedures such as machine learning, that proceed adaptively from
the data will improve forecasting accuracy, sometimes dramatically. Machine
learning has other benefits as well, and e↵ective software is readily available.

Policy Implications

The complexity of the decision boundary will in practice be unknown, and
there can be substantial risks to gambling on simplicity. Criminal justice

⇤Thanks go to Bill Rhodes and three anynomous reviewers for many helpful comments
on this paper.
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decision makers and other stakeholders can be seriously misled with rippling
e↵ects going well beyond the immediate o↵ender. There seems to be no
reason for continuing to rely on traditional forecasting tools such as logistic
regression.

1 Introduction

Forecasts of recidivism have been widely used in the United States to in-
form parole decisions since the 1920s (Burgess, 1928; Borden, 1928). Of
late, such forecasts are being proposed for a much wider range of criminal
justice decisions. One important example is recent calls for predictions of
“future dangerousness” to help shape sentencing (Pew Center of the States,
2011; Casey, 2011). The recommendations build on related risk assessment
tools already operational in many jurisdictions, some mandated by legisla-
tion (Kleinman et al., 2007; Turner et al., 2009; Hyatt et al., 2011; Skeem
and Monahan, 2011; Oregon Youth Authority, 2011). In Pennsylvania, for
instance, a key section of a recent statute reads as follows.

42 Pa.C.S.A.§2154.7. Adoption of risk assessment in-

strument.

(a) General rule. – The commission shall adopt a sentence risk
assessment instrument for the sentencing court to use to help
determine the appropriate sentence within the limits established
by law for defendants who plead guilty or nolo contendere to, or
who were found guilty of, felonies and misdemeanors. The risk
assessment instrument may be used as an aide in evaluating the
relative risk that an o↵ender will reo↵end and be a threat to pub-
lic safety.
(b) Sentencing guidelines. – The risk assessment instrument may
be incorporated into the sentencing guidelines under section 2154
(relating to adoption of guidelines for sentencing).
(c) Pre-sentencing investigation report. – Subject to the provi-
sions of the Pennsylvania Rules of Criminal Procedure, the sen-
tencing court may use the risk assessment instrument to deter-
mine whether a more thorough assessment is necessary and to
order a pre-sentence investigation report.
(d) Alternative sentencing. – Subject to the eligibility require-
ments of each program, the risk assessment instrument may be an
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aide to help determine appropriate candidates for alternative sen-
tencing, including the recidivism risk reduction incentive, State
and county intermediate punishment programs and State moti-
vational boot camps.
(e) Definition. – As used in this section, the term risk assessment
instrument means an empirically based worksheet which uses fac-
tors that are relevant in predicting recidivism.

With such widespread enthusiasm and very high stakes, one might assume
forecasting accuracy has been properly evaluated and determined to be good.
In fact, competent evaluations can be di�cult to find for a wide variety of
criminal justice decisions. Some of the problems have a long history (Ohlin
and Duncan, 1949; Reiss, 1951; Ohlin and Lawrence, 1952). For example, it
is relatively rare for evaluations to be based on “test data” that were not used
to construct the forecasting procedures. The danger is grossly overoptimistic
assessments. More recent commentaries have documented a number of other
problems, sometimes including no evaluation at all (Farrington and Tarling,
2003; Gottfredson and Moriarty, 2006; Berk, 2012).

The need for thorough and thoughtful evaluations has become even more
important over the past decade because in addition to calls for a more rou-
tine use of crime forecasts, new forecasting tools from computer science and
statistics have been developed. Often supported by formal proofs, simu-
lations, and comparative applications across many di↵erent data sets, these
tools promise improved accuracy in principle (Breiman, et al., 1984; Breiman,
1996; 2001a; Vapnick, 1998; Friedman, 2002; Chipman et al., 2010).1 For ex-
ample, Breiman (2001a) provides a formal treatment of random forests and
its comparative performance across 20 di↵erent datasets. There now several
instructive criminal justice applications in print as well (Berk, 2012).

Yet, there are also several recent articles claiming that for criminal justice
applications, the new tools perform no better than the old tools (Yang, 2010;
Liu et al., 2011; Tollenaar and van der Heijden, 2013). Logistic regression
(Berkson, 1951) is a favorite conventional approach. The conclusion seems
to be “why bother?” For criminal justice forecasting applications, the new
procedures are mostly hype.

“The conclusion is that using selected modern statistical, data
mining and machine learning models provides no real advantage

1Very accessible treatments can be found in a number of textbooks (Bishop, 2006; Berk,
2008; Hastie et al., 2009).
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over logistic regression and LDA.2 If variables are suitably trans-
formed and included in the model, there seems to be no addi-
tional predictive performance by searching for intricate interac-
tions and/or non-linear relationships” (Tollenaar and van der Hei-
jden, 2013).

How can the proofs, simulations and many applications provided by
statisticians and computer scientists be so wrong? How can it be that statis-
tical procedures being rapidly adopted by private firms such as Google and
Microsoft and by government agencies such as the Department of Homeland
security and the Federal Bureau of Investigation are no better than regression
methods readily available for over fifty years? Why would the kinds of new
analysis procedures being developed for analyzing a variety of datasets with
hundreds of thousands of cases (Dumbill, 2013; National Research Council,
2013: Chapter 7) not be especially e↵ective for a criminal justice dataset of
similar size?

A careful reading of the technical literature and recent criminal justice
applications suggests that there can be a substantial disconnect between that
technical literature and the applications favored by many criminal justice re-
searchers. Statisticians and computer scientists sometimes do not distinguish
between forecasting performance in principle and forecasting performance in
practice. Criminal justice researchers too often proceed as if the new pro-
cedures are just minor revisions of the generalized linear model. In fact,
the conceptual framework and actual procedures can be very di↵erent and
require a substantial change in data analysis craft lore. Without a proper
appreciation of how the new methods di↵er from the old, there can be serious
operational and interpretative mistakes.

In this paper, we try to improve the scientific discourse by providing
an accessible discussion of some especially visible, modern forecasting tools
that can usefully inform criminal justice decision-making. The discussion is
an introduction to material addressed far more deeply in Criminal Justice

Forecasts of Risk: A Machine Learning Approach (2012), written by the
senior author. We also try to provide honest, apples-to-apples performance
comparisons between the newer forecasting methods and more traditional
approaches.

For some readers, it may be useful to make clear what this paper is
not about. As one would expect, there have been jurisprudential concerns

2“LDA” stands for linear discriminant analysis.
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about “actuarial methods” dating from at least the time when sentencing
guidelines first became popular (Messinger and Berk, 1987; Feely and Simon,
1994), and more recent discussions about the role of race have introduced an
important overlay (Harcourt, 2007; Berk, 2009). The issues are di�cult and
real. They are also not addressed in this paper. Our concerns are more
immediate. Forecasts of future dangerousness are being developed and used.
Real decisions are being made a↵ecting real people. At the very least, those
decision should be informed by the best information available. And that
information depends significantly on the forecasting procedures deployed.

2 Proper Criminal Justice Forecasting Com-

parisons

The conceptual foundation for criminal justice forecasting can easily be mis-
construed (Ridgeway, 2013). We begin, therefore, with a fundamental con-
ceptual point that some readers may at first find counterintuitive. As a
formal matter, one does not have to understand the future to forecast it with
useful accuracy. Accurate forecasting requires that the future be substan-
tially like the past. If this holds, and one has an accurate description of the
past, one has an accurate forecast of the future. That description does not
have to explain why the future takes a particular form and certainly does not
require a causal interpretation. Readers comfortable with traditional time
series analysis (Box iand Jenkins, 1970), should have no problem with this
reasoning.

It follows that there is a key distinction between forecasting and explana-
tion that has been badly conflated in some accounts (Andrews et al., 2006).
Understanding a phenomena may lead to improved forecasting accuracy, or
it may not, but forecasting and explanation are di↵erent enterprises that can
work at cross-purposes. For example, explanatory models should be rela-
tively simple and provide instructive interpretations. Such models can leave
out a large number of weak predictors that one-by-one do not enlighten but in

the aggregate dramatically improve forecasting accuracy. Common practice
implicitly folds such variables into the disturbance term. Alternatively, such
predictors, often called “nuisance variables” in limited information structural
models, are associated “nuisance parameters” and given “minimal attention”
(Cameron and Trivedi, 2005: 36). Similar issues arise if simple, easily inter-
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pretable functional forms (e.g., linear) are used when complex functional
forms might fit the data somewhat better.3

The approach we take is to maximize forecasting accuracy, and that is the
premise on which the underlying mathematics depend. We take this approach
because it leads to clear performance criteria and various proofs of optimal
forecasting accuracy for a given dataset. Such clarity is an undeniable virtue
about which more will be said shortly.

Equally important, there are a wide variety of decisions made by criminal
justice o�cials in which a necessary condition is the best possible forecasting
accuracy. Consider a judge’s decision to sentence an o↵ender to either incar-
ceration or probation. Pennsylvania’s statute states that a “risk assessment
instrument may be used as an aide in evaluating the relative risk that an of-
fender will reo↵end and be a threat to public safety.” Presumably, accuracy
really matters. Imagine the ethical and legal implications of using a partic-
ular risk tool to justify a long incarceration when there exist more accurate
risk tools from which a sentence of probation could be more appropriate.
There is also no requirement in the legislation that a judge understand why
an individual is high or low risk. Indeed, it is not even clear what a judge
would do with such information.4 Other examples, include pre-trial deci-
sions to release defendants on bail or decisions by parole boards to release
under supervision inmates who have not served their full terms. One could
also imagine forecasts of future dangerousness helping to determine charging
decisions by prosecutors.

Thus, there is no formal concern in this paper with why certain predictors
improve forecasting accuracy and no attempt to interpret them as explana-
tions for the forecasted behavior. For example, if other things equal, shoe
size is a useful predictor of recidivism, it can be included as a predictor. Why
shoe size matters is immaterial. In short, we are not seeking to identify risk
factors that may or may not make any subject-matter sense. That can be a
useful enterprise, but it is a di↵erent enterprise.

Indeed, if the enterprise really is explanation, than some form of struc-
tural equation modeling may be called for. There is an extensive and largely

3Some di↵erences in jargon can be instructive. In machine learning a “predictor” is
often called an “input,” and a response or dependent variable is often called a “target.”

4In the special case when there are clear indications of substance dependency or psy-
chological problems, a judge might order treatment along with the sentence. But such
conditions are not necessarily risk factors for many kinds of crime, and indications of need
can be su�cient.
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unrebutted literature highly critical of structural equation modeling in gen-
eral. An excellent, accessible, and technically sound treatment can be found
in David Freedman’s textbook Statistical Models (2005). We cannot rehash
the issues here except to stress that machine learning is not a form of struc-
tural equation modeling and should never be interpreted as such.5 Moreover,
if the goal is to use one or more risk factors to design and test interventions,
many would argue that the only sound approach is randomized experiments
or very strong quasi-experiments.

2.1 Some Common-Sense Requirements for Fair Fore-

casting Comparisons

If one intends to compare the forecasting performance of di↵erent forecasting
tools, there are several basic, common-sense requirements. These provide the
ground rules.

1. One must be clear on what features of forecasting procedures are being
compared. As we explain below, “black box” forecasting methods may
forecast with remarkable accuracy and provide decision makers with
tools that can be enormously helpful (Breiman, 2001b). But black box
forecasting methods may have little to say about which risk factors
matter most. If the goal is to compare di↵erent procedures by their
forecasting accuracy, forecasting accuracy should be the benchmark.

2. Forecasting comparisons must be based on data not used to construct
the competing forecasting procedures. Such data are often called “test
data,” and accuracy is often called “out-of-sample performance.” Data
used to build the forecasting procedures can be called “training data.”
If training data are also used as test data, all comparisons risk contam-
ination through overfitting (Hastie et al., 2009: 219-226). As already
noted, this point has been appreciated for well over 50 years, but is
often ignored.

5A structural equation model is an algebraic theory of how nature generated the data
and as such, can be right or wrong. Machine learning employs algorithms that seek some
well defined empirical goal, such as maximizing forecasting accuracy. There is no structural
model. Concerns about whether the model is correct are irrelevant. What matters is how
well the algorithm performs.
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3. Proper performance criteria must be used that are the same across
competing methods. For example, measures of fit are not appropriate
if the competition claims to be testing forecasting accuracy. In addition,
there are many di↵erent measures of forecasting performance (Hastie
et al., 2009, chapter 7), and the same measure should be used for all
of the competitors. For example, the area under a receiver operating
characteristic curve (ROC) provides very di↵erent information from
that available through direct estimates of generalization (forecasting)
error (Hastie et al., 2009: 314-317).

4. All of the forecasting competitors should be accurately characterized
if comparisons are to be properly understood. For example, there are
a number of forecasting procedures represented as state-of-the-art that
actually are not. There are also forecasting procedures characterized
as machine learning that actually are not. Classification trees, for in-
stance, (Brieman, et al., 1984) is neither state-of-the-art nor a ma-
chine learning technique. AdaBoost (Freund and Schapire, 1995) is
a machine learning procedure, but was state-of-the-art 15 years ago.
Bayesian additive regression trees (Chipman et al., 2010) can be con-
sidered state-of-the-art, but is not formally within machine learning
traditions. Random Forests (Breiman, 2001a) is state-of-the-art and a
machine learning procedure.6

5. Many of the popular forecasting procedures have tuning parameters
that researchers can use to improve forecasting accuracy.7 In addition,

6What qualifies as state-of-the-art can certainly be debated, but within sensible bound-
aries, there can be remarkable consensus. For example, random forests is certainly not the
newest machine learning procedure, but for a wide range applications nothing else seems
to consistently perform better. Likewise, sharp distinctions between machine learning,
statistical learning and a variety of other related procedures are increasingly di�cult to
defend and probably not worth quarreling over (National Research Council, 2013: 61).
Nevertheless, within somewhat fuzzy boundaries, there can be widespread agreement.

7Tuning parameters can be set at particular values to improve the performance of a
given statistical procedure (National Research Council, 2013: 70-73). In the estimation of
a logistic regression, for instance, the convergence threshold of the iteratively reweighted
least squares algorithm is a tuning parameter. It needs to small enough to produce a
close approximation to a maximum likelihood estimate, but not so small that unnecessary
iterations are performed. Another example is a decision in stepwise regression to fix the
number of predictors that can be included in the final model. In forecasting settings,
tuning parameters usually are chosen in service of forecasting accuracy.
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sometimes researchers do not understand that in their e↵ort to max-
imize forecasting accuracy they are implicitly tuning their procedure.
Fair comparisons require that all competitors are tuned in a compa-
rable fashion. This can be di�cult because the tuning is often based
on principles that can depend on the particular forecasting procedure
being used.

6. All forecasting competitions are necessarily data dependent and can
vary across di↵erent applications. Forecasting competitions do not re-
veal fundamental and invariant forecasting truths. To take a simple
example, a procedure that performs poorly in small samples may be
a star in large samples because its best properties only materialize
asymptotically. Appropriate caveats should be attached to the results
of all forecasting comparisons.

7. Performance di↵erences across di↵erent forecasting procedures must
be thoughtfully evaluated. This will often mean a careful consider-
ation of how a forecasting procedure will be used. A small di↵erence
in forecasting accuracy can translate into a di↵erence of hundreds of
crimes. Academic researchers may not care. But stakeholders surely
do. There is also the equally important matter of taking uncertainty
into account. Some apparent di↵erences wash out in new realizations
of the data. They are just chance artifacts.

8. It should go without saying, but all of the forecasting procedures must
be implemented correctly. There is ample evidence that too often this
is not the case (Berk, 2012).

3 Some Conceptual Fundamentals

We turn now to a conceptual overview of classification and forecasting. The
intent is to provide a very accessible, didactic overview that can apply to a
very broad range of forecasting procedures used previously in criminal justice
applications. Readers interested in a technical discussion should consult the
references cited.

Consider the decision of whether or not to release an individual on parole.
Since the 1920’s, such decisions have often been informed by forecasts of
whether a given inmate will be arrested for a new crime soon after release.
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The forecasts are shaped by actuarial procedures applied to information from
inmates who had been released in the past. In e↵ect, profiles are developed
that can classify inmates by whether they succeeded or failed on parole.
These profiles are used to forecast parole outcomes when they are not yet
known. In the next few pages, we provide a basic, nontechnical overview of
how this can be done. We build on a prior treatment written for criminal
justice researchers (Berk, 2012) and on more formal textbook discussions as
needed (Bishop, 2006; Hastie et al., 2009).

3.1 The Basic Account

Figure 1 is a very simplified and initial plot illustrating how classification
and forecasting can be undertaken. The red circles represent individuals
who have failed on parole in the past. The blue circles represent individuals
who have succeeded on parole in the past. There are two predictors in this
illustration. One predictor is the number of prior arrests. The other predictor
is the number of rule infractions during the most recent incarceration. Both
can be seen as “dynamic” predictors, but “static” predictors would have not
materially changed the discussion. Figure 1 can be seen as a 3-dimensional
scatterplot.8

The statistical task is to impose a “decision boundary” on the 2-dimensional
predictor space that can be used to define two classes: those who fail and
those who do not. The term “decision boundary” is used because the intent
is to directly inform actual decisions.9 Statistical procedures that partition
the data into di↵erent grouping are often called “classifiers.” In this instance,
the partitioning should result in the fewest classification errors possible. For
Figure 1, there will necessarily be two regions defined, one for failures and
one for successes. Ideally, the failure region has no successes, and the success
region has no failures. Usually, one has to settle for less.

8The meanings of “dynamic predictors” and “static predictors” can depend on the
context and the decision to be informed by the forecast. For example, the di↵erence
between statistic and dynamic predictors plays a key role in the fairness of parole decisions.
Is it appropriate to use static predictors already employed at sentencing when later parole
decisions are made? Is there a risk of unfair “double counting”? Thus, the crime that sent
an individual to prison is static. Should it be also used to help inform parole decisions?
In contrast, time in a prison secure housing unit (SHU) is in this context dynamic. There
would be no concerns about double counting if it were empoyed by a parole board.

9The underlying mathematics is shaped by the same goal.
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Figure 1: Two Linear Decision Boundaries in 2-Dimensional Predictor Space

The dotted line is one possible linear decision boundary. In the region
above the dotted line, failures predominate by a count of 13 to 2. So, that
region is assigned the class of “failure.” In the region below the dotted line,
successes predominate by a count of 17 to 5. So, that region is assigned the
class of “success.”

The assigned classes can be used for forecasting. When a new case is
found for which a forecast is needed, that case is placed in one region or the
other depending on its values for the two predictors. For example, a case with
a very large number of priors and a very large number of prison infractions
would be placed in the “failure” region to the upper right, and a forecast of
failure would be made. A decision to impose a sti↵ prison sentence could
follow.

The dotted decision boundary results in several classification errors. There
are 2 (blue) successes classified as failures, and 5 five (red) failures classified
as successes. Overall, there are 7 errors for 35 cases, which means that the
classification procedure is right about 80% of the time. In real applications,
this would be considered very good performance.

The dashed line is another attempt to accurately separate the successes
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from the failures. Above this alternative linear decision boundary, the major-
ity of cases once again are failures. Therefore, the class of “failure” is assigned
to that region of the figure. Below the alternative linear decision boundary,
the majority of cases are successes. Therefore, the class of “success” is as-
signed to that region of the figure. Now there are only five misclassified cases:
2 blue circles are in the red region and 3 red circles are in the blue region.
The new boundary produces correct classifications about 85% of the time,
and on those grounds is likely to be preferred to the old boundary.

As before, any cases with predictor values that place them above the
decision boundary, but whose outcomes are not yet known, are forecasted to
be failures. Similarly, any cases with predictor values that place them below
the decision boundary, but whose outcomes are not known, are forecasted to
successes. From a classification exercise comes a forecasting procedure. The
forecasts, in turn, are used to inform parole decisions.

How might one arrive at the best linear decision boundary? If the two
outcomes are coded as 1 or 0, and conventional linear regression is applied
using the two predictors as regressors, one important kind of optimal linear
decision boundary can be imposed on the predictor space. That line is defined
by fitted values of .50. Cases with regression fitted values greater than .50
are assigned one class and cases with regression fitted values equal to or less
than .50 are assigned the other class. By minimizing the sum of squared
residuals and imposing a fitted value threshold at .5, one is also minimizing
the sum of the classification errors (Hastie et al., 2009: 20-22).

Alternatively, one can apply logistic regression. The same basic reason-
ing works. When the response is represented as the log of the odds of the
category coded as 1, there is again a linear decision boundary in “logit”
units. The threshold is a logit of 0.0 (Hastie et al., 2009: 102), which in
a probability metric is .50. Forecasting accuracy may be better or worse
than for linear regression. Linear regression assumes that in the metric of
the 1/0 outcome, relationships with the predictors are linear. Logistic re-
gression assumes that in the metric of the 1/0 outcome, relationships with
the predictors are S-shaped (i.e., the cumulative logistic function). Which of
these leads to better forecasts in a given setting will usually be an empirical
matter. Both functions are typically arbitrary because there will rarely be
compelling subject-matter theory requiring one or the other.10

10Linear and quadratic discriminant function analysis has much in common with logistic
regression and has been used in criminal justice risk assessments. We do not consider linear
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3.2 Building in Di↵erential Forecasting Error Costs

To this point, all classification errors are given equal weight. A success
classified as a failure counts the same as a failure classified as a success. This
is why the least squares regression minimizes the number of forecasting errors.
In many criminal justice settings, the assumption of equal weights is not
responsive to the preferences of stakeholders. For example, the consequences
of forecasting a parole success for an individual who will fail can be far
more serious than forecasting a parole failure for an individual who will be
a success. The parole failure may entail a heinous crime. Failing to release
an individual who would be crime-free leads to increased time behind bars.
Both forecasting errors are costly, but for many stakeholders, the costs to
victims of a heinous crime are far greater than the costs of extra prison time.
Whether or not these relative costs generally hold, an assumption that all
forecasting errors have equal costs is likely to be unrealistic.11

And costs matter for forecasts meant to inform real decisions. Figure 2
shows why. Using the broken line as the decision boundary, there are two
successes that are incorrectly classified as failures. For this illustration, sup-
pose that stakeholders think that the costs of “over-incarceration” are greater
than the costs of crimes committed while on parole. There are reasons, there-
fore, to upweight the blue mistakes relative to the red mistakes. We show
this in Figure 2 by making the two blue mistakes much larger. A new linear
decision boundary results. Least squares regression can be used as before.
But the decision boundary shifts toward the upper right with perhaps also a
change in the slope.

The two blue mistakes are now accurately classified as successes. They
no longer count as errors. But in trade, there are now five rather than three
misclassified red circles. It looks like a wash — there are two fewer successes
classified as failures, and two more failures classified as successes. But it is
not a wash. The new decision boundary is to be preferred because the original
two blue mistakes were much more costly than the two new red mistakes.

If the new decision boundary is preferred, many of the forecasts can

or quadratic discriminant function analysis because one must assume that the predictors
have a multivariate normal distribution (Hastie et al., 2009: section 4.3). This is unrealistic
for most predictors in criminal justice settings, especially when any of the predictors are
categorical.

11A more complete discussion about the role of asymmetric costs is beyond the scope
of this paper. An excellent treatment can be found in a special issue of the Albany Law
Review, edited by Shawn Bushway (2011).
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Figure 2: Impact of Asymmetric Costs in 2-Dimensional Predictor Space

change. In this example, cases to be forecasted as failures will need a greater
number of priors and a greater number of prison infractions than previously.
The increase will be larger for the number of prison infractions because the
new decision boundary was shifted outward more for the infractions predic-
tor.

The point is that not all forecasting errors are created equal, and the
relative costs of di↵erent kinds of forecasting errors should be built into any
classification/forecasting procedure. To ignore this issue is to assume equal
costs. And if equal costs are not consistent with stakeholder preferences, the
forecasts will not be properly responsive. Misleading forecasts can result.

3.3 Nonlinear Decision Boundaries

Why be limited to linear decision boundaries? Nonlinear boundaries can in
principle perform better. In Figure 3, we reproduce much of Figure 1, but
now with a nonlinear decision boundary shown by the dotted line. There
are no red circles falling below the nonlinear decision boundary, and no blue
circles falling above the nonlinear decision boundary. Classification is perfect.
The prospects for forecasting accuracy look very promising indeed.
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Figure 3: A Linear and Nonlinear Decision Boundary in 2-Dimensional Pre-
dictor Space

The linear decision boundary is far less complex than the nonlinear de-
cision boundary.12 The price for greater simplicity is more classification er-
rors. Clearly, one’s ability to classify accurately is enhanced when the deci-
sion boundary can be more complex. It is easier for the nonlinear decision
boundary to respond to complicated data structures.

A sensible statistical aim, therefore, can be to use predictors in a manner
that allows for nonlinear decision boundaries as needed. There can be two
related approaches (National Research Council, 2013: 63). For parametric
procedures such as logistic regression, greater complexity can in principle be
addressed by including a larger number of predictors. Transformations of
predictors can help. For instance, one might include not just the age of an
inmate, but some polynomial function of age. One might even break up age

12There seems to be no consensus on how best to define the amount of complexity. One
popular approach is the degrees of freedom used to construct the decision boundary. In
this example, the nonlinear decision boundary would use many more degrees of freedom
than the linear decision boundary. A closely related approach is link complexity to the
“e↵ective dimension” of the statistical procedure or in some cases, the data itself (National
Reserch Council, 2013: 70).
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into a set of binary dummy variables. Statistical interactions might also be
captured with products of variables. The point is that the capacity to address
greater complexity needs to be built in from the beginning or determined later
in a set of very e↵ective exploratory procedures. Also required is that the
requisite predictors are included in the dataset. Many would argue that these
requirements cannot be met in practice.

For nonparametric procedures such as smoothing splines (Hastie et al.,
2009: section 5.4), one may include as many predictors as possible, along
with promising transformations, but the procedure attempts to determine the
decision boundary complexity needed. At one extreme, the fitted values are a
hyperplane (just as in conventional linear regression). At the other extreme,
the fitted values are an interpolation between all data points. The former is
much less complex than the latter. In practice, some result between these
extremes is typical. In contrast to parametric methods like logistic regression,
an adaptive process is used to arrive at a decision boundary — the procedure
exploits information in the data to determine both the shape and location of
a decision boundary.13 Unless a researcher is close to prescient and has the
data rich enough to constructively respond, adaptive procedures start with
a substantial forecasting advantage.14

But there is a downside to adaptively determined decision boundaries.
As a greater number of degrees of freedom is used up for a given sample
size, there is the real risk of increased instability in the results. There is less
information available per procedure parameter. In addition, there can be
overfitting in which the procedure responds to idiosyncratic features of the

13Stepwise regression is an example of a very simple adaptive procedure within a con-
ventional regression framework. But again, distinctions may not be sharp. When re-
searchers respecify their models after looking at the results, the final model is shaped by
data-informed induction. Some would say that the di↵erence is that the model selection
process is not built into the data analysis algorithm itself.

14If resources allow, a parametric brute force approach may help to level the playing
field. With thousands of observations and hundreds of predictors, one can in addition
construct a priori many nonlinear transformations and interaction variables. In e↵ect,
the researcher tries to anticipate how a e↵ective adaptive procedure could respond. All of
the original predictors and new transformations can then be included in a single “kitchen
sink” regression. The regression will likely be uninterpretable. The complexity and multi-
collinearity alone could be toxic. If model selection procedures are applied to simplify, one
is doing a seat-of-the-pants adaptive modeling with all of its attendant problems (Berk
et al., 2010). Why settle for a brute force approximation to the desired procedure? An
example can be found in the recent paper by Tollenaar and van der Heijden (2013).
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data. Because forecasting involves new data, not the data used to develop the
decision boundary, forecasting accuracy can be disappointing. The procedure
does not generalize well to new data, which is precisely what forecasting
entails.

For example, an individual with a large number of priors and a large
number of prison misconducts may have a high probability of failure on
parole. But a high probability is not a certainty. If that individual does
not fail, a complex decision boundary would try to accurately classify that
individual as a success. As a result, an anomalous case inconsistent with most
of the data would help shape the decision boundary. When that decision
boundary is then used for forecasting with data in which such anomalous
cases were absent, the decision boundary would not perform as well. It
would be unnecessarily complex and risk an increase in forecasting errors.
Looking back at Figure 3, if any one of the 3 red circles had as little as
one or two more prison infractions or priors, the red circle would have fallen
above the linear decision boundary, and one of the fingers in the nonlinear
decision boundary would not have been constructed.

There are useful responses to overfitting, often called “shrinkage” or “reg-
ularization.” The intent is to reduce the instability. With smoothing splines,
for instance, the fitting function is penalized for increases in complexity
(Hastie et al., 2009: section 5.4). In a least squares context, the residual sum
of squares is increased so that what might be the smallest sum of squared
residuals no longer is the smallest. A residual sum of squares that starts out
being larger, but has a smaller penalty because of less complexity, can be the
preferred minimizer. In other words, a price is put on complexity that does
not substantially improve the fit.

Another approach, called bagging (Breiman, 1996), capitalizes on a large
number of random samples with replacement from the data on hand. A clas-
sification procedure is applied to each sample, and the results are averaged
across samples. One important consequence is that idiosyncratic results tend
to cancel out.

Finally, in this illustration, the two predictors have substantive inter-
pretations. In general, parolees with a great number of prior arrests and a
greater number of prison infractions are more likely to fail on parole. How-
ever, any substantive insights are a bonus. The primary goal is to classify
accurately because that can lead to the most accurate forecasts. With re-
spect to that goal, the two predictors could as well be longitude and latitude.
This allows for the possibility of using “black box” classification procedures,
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for which no apologies need be made. One does not have to rely a “structural
model” when forecasting is the primary motive. Indeed, the requirement of a
structural model can undercut forecasting accuracy (Breiman, 2001b). Two
di↵erent masters are being served.

In summary, when forecasting accuracy is the primary goal, parametric
approaches such as logistic regression can in principle perform as well as non-
parametric approaches when the best decision boundary is relatively simple,
and when the predictors required by the correct model are available in their
proper form. When the best decision boundary is complex and/or the requi-
site predictors are not all available, nonparametric procedures will forecast
more accurately, often substantially more accurately.

3.4 Enter Machine Learning

Where does machine learning come in? Machine learning, sometimes when
called “statistical learning,” can be viewed as a special form of nonpara-
metric regression. The goal can be to find the “right model.” But when
machine learning is used strictly as a forecasting procedure, the connections
to conventional regression models become very distant indeed. As will soon
be discussed in more detail, there is no structural model even in principle.

The transition to machine learning can confer a number of important
benefits, some of which are not readily available otherwise.

1. One is not limited to classifiers able to forecast one of two outcome
categories. In some recent applications, for instance, parole outcomes
are forecasted for three classes: an arrest for a violent crime, an ar-
rest for a crime that is not violent, and no arrest (Berk et al., 2010).
Increasingly, criminal justice agencies want to forecast more than the
binary outcome of any arrest versus no arrest (Berk, 2012). The kind
of arrest really matters. In particular, arrests for crimes of violence are
distinguished from other kinds of arrests.

2. Forecasting errors that do not have equal costs can be introduced into
the procedure at the beginning so that all of the results properly rep-
resent the preferences of stakeholders (Berk, 2011).

3. Regularization is often built directly into the procedure to increase
forecasting accuracy (Hastie et al., 2009: chapter 5, section 8.7).
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4. Highly unbalanced distributions for the classes to be forecasted create
no special problems as long as the rare outcomes are important enough
to be given extra weight in the analysis. For example, in some recent
work for individuals primarily on probation, the outcome classes to be
forecasted included a class for homicide or attempted homicide, which
represented only about 2% of the outcomes (Berk et al., 2009a; 2009b).

5. Some procedures work well and in a principled manner with an enor-
mous number of predictors and even when there are more predictors
than cases (Hastie et al., 2009: chapter 15).

4 The Forecasting Contestants

We will compare the forecasting performance of three di↵erent classifiers:
logistic regression, random forests, and stochastic gradient boosting. Logis-
tic regression represents business as usual over the past 50 years. It is a
special case of the generalized linear model, and very familiar to criminal
justice researchers. Random forests (Breiman, 2001a) and stochastic gradi-
ent boosting (Friedman, 2002) represent true machine learning procedures
based on ensembles of classification trees. Both are nonparametric, rest on
solid mathematical foundations, and both have been widely battle tested.
All of the evidence to date indicates that they can perform well in criminal
justice applications (Berk, 2013). All three are worthy competitors.15

4.1 Forecasting Class Membership with Logistic Re-

gression

Logistic regression, sometimes called binomial regression, is a special case of
the generalized linear model. As such, it is meant to represent how nature
generated the data — it is an algebraic translation of subject-matter theory.
In that sense it is a “structural model,” and forecasting can be little more

15There are other worthy competitors such as Bayesian neural nets (Hastie et al., 2009:
Section 11.9) and support vector machines (Hastie et al., 2009 Chapter 12). They are not
considered here for lack of space and the need to introduce a substantial amount of new
technical material. Su�ce it to say that they too are well equipped to address complex
decision boundaries and should have foresting skill roughly comparable to random forests
and stochastic gradient boosting. But comparisons are di�cult because a new suite of
tuning parameters is introduced.
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than an afterthought. Nevertheless, if the theory is correct and its algebraic
representation is consistent with the theory, accurate forecasting can result.

Forecasting is undertaken through the regression’s fitted values. These
can either be in logit (i.e., log odds) units or probability units. Researchers
typically use the probabilities when forecasting. To get from the probabilities
to a forecasted class, a single threshold must be applied. For example, it is
common to use a threshold of .50. Probabilities greater than .50 are assigned
one outcome class (e.g., failed on parole). Probabilities less than or equal to
.50 are assigned the other outcome class (e.g., succeeded on parole).

The threshold of .50 implies that the costs of false negatives and false
positives are the same. As already noted, they are usually not the same.
Suppose a “positive” is a person who commits a violent crime. Suppose a
“negative” is a person who does not commit a violent crime. It follows that
if false negatives are three times more costly than false positives, one should
use a threshold of .25. Cases with predicted probabilities greater than .25 are
forecasted to be violent o↵enders. Cases with predicted probabilities equal
to or less than .25 are forecasted to not be violent o↵enders. It is three
times easier for a person to be forecasted a violent o↵ender than a nonviolent
o↵ender or no o↵ender at all (.75/.25 = 3).

Altering the threshold only a↵ects the step from probabilities to classes.

All of the other logistic regression output is computed under the assumption
that false negatives have the same costs as false positives. In particular,
the logistic regression coe�cients would almost surely be di↵erent had the
actual relative costs of false negatives and false positives been properly taken
into account. It can be a serious error, for instance, to use the regression
coe�cients as weights for constructing risk assessment instruments.16

Based on the logistic regression model results the risk factors were as-
signed weights or points. The points included 1 point for all factors, with the
exception of Two or More Failure to Appear Convictions, which was assigned

16They are in logits units, not probability units. If one follows the common practice
of exponentiating the regression coe�cients and intercept, one is now at working in odds
units. In addition, the regression coe�cients and intercept are then multipliers and do not
represent additive weights. If the intent is to obtain risk factor weights in probability units,
one must go back to the original nonlinear logistic model. But because of the nonlinear
functional form, there is not one weight for each risk factor — there is a limitless number.
So that strategy fails too. It is also possible to ignore the regression coe�cients and weight
risk factors by simply “assigning weights or ‘points’ ” (VanNostrand and Rose, 2009: 9).
The statistical foundation for that approach is obscure.
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2 points due to the predictive strength of the risk factor. The points were
totaled to create a score from 0 to 10. The scores were then used to create
risk levels. As a result, the VPRAI consists of five risk levels including low,
below average, average, above average, and high as shown in the following
figure.

Finally, logistic regression can only be used for binary outcomes. These
days, criminal justice stakeholders often want much more — they want to
forecast di↵erent kinds of crimes. As already noted, in some applications
the intent is to work with three crime categories: arrests for violent crimes,
arrests for crimes that are not violent, and no arrest at all (Berk et al.,
2010). In the context of probation supervision, one motivation is to move
supervisory resources from individuals who do not threaten public safety to
individuals who do, a strategy that has been shown to work well (Berk et
al., 2010). When there are more than two outcome classes, multinomial
logistic regression may be an option, but there are a number of unresolved
issues about how best to go from predicted probabilities for each class to the
classes themselves.

4.2 Random Forests

A random forest is an ensemble of classification trees. The classification
trees are an intermediate product used because they fit the data adaptively.
They have no stand-alone role, and in the end are e↵ectively invisible. They
disappear into a machine learning black box through the follow algorithm.

1. A random sample of size N is drawn with replacement from a “training”
dataset. Observations not selected are retained as the “out-of-bag”
(OOB) data to later serve as “test data.” On average about a third of
the data will be OOB. The growing process for the first classification
tree then begins.

2. A small sample of predictors is randomly drawn (e.g., 3 predictors).

3. After selecting the best split as usual from among the randomly selected
predictors, the first partition is determined. There are then two subsets
of the data that together maximize the improvement in the Gini index.

4. Steps 2 and 3 are repeated for all later partitions until the fit does not
improve or the observations are spread too thinly over terminal nodes.
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5. The Bayes’ classifier is applied to each terminal node to assign a class
— the class for each terminal node is determined by the class in the
node that has the largest number of cases.

6. The OOB data are “dropped down” the classification tree. Each obser-
vation is labeled with the class assigned to the terminal node in which
it lands. The result is the predicted class for each observation in the
OOB data for that tree.

7. Steps 1 through 6 are repeated many times to produce a large number
of classification trees. There are often 500 trees or more.

8. For each observation, the class assigned is determined by “vote” over all
trees in which that observation is OOB. The class with the most votes
is chosen. That class can be used for forecasting when the predictor
values are known but the outcome class is not.

The adaptive nature of classification trees helps to reduce bias. In ad-
dition to the predictors used as inputs, there are “derived” predictors con-
structed as needed. The sampling of training data and predictors serves as
a form of regularization that can improve the stability of class assignments
and help make those assignments more independent over trees. Averaging
over trees enhances both results. Finally, the use of OOB data helps to
prevent overtfitting. In the end, random forests does not overfit as the num-
ber of trees in the random forest increases. A formal proof can be found in
Breiman’s seminal paper on random forests (2001a).

There are several ways to introduce asymmetric costs. Perhaps the best
way is to employ stratified sampling in step 1. There is one stratum for each
outcome class. Sample sizes for each stratum are determined so that some
outcome classes are oversampled and some are undersampled. In e↵ect, the
oversampled classes are given more weight as each tree is grown, which in
turn will a↵ect the balance of false negatives to false positives. That balance
captures relative costs. For example, if there are 10 false positives for every
false negative, false negatives are necessarily 10 times more costly than false
positives.

In addition to “confusion tables” in which forecasted outcomes from OOB
data are cross-tabulated with the observed outcomes, there are measures of
the contribution to forecasting accuracy for each predictor, and plots that
show the way in which each predictor is related to the response, holding all
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other predictors constant. The details are beyond the scope of this paper
but some examples are provided later. (See, for example, Berk, 2008 for the
details.)

4.3 Stochastic Gradient Boosting

Stochastic gradient boosting proceeds by applying a “weak learner” repeat-
edly to the data. After each pass through the data, all observations are
reweighted, giving more weight to observations that were more di�cult to
accurately classify. The fitted values from each pass are used to update earlier
fitted values. The weak learner is “boosted” to perform as a strong learner.
Here is an outline of the algorithm for a binary outcome coded numerically
as “1” for failure on parole or “0” for success on parole.

1. The algorithm is initialized with fitted values for the binary outcome.
The overall proportion of cases that fail is a popular choice.

2. A random sample without replacement is drawn from the training data
with a sample size of about half the sample size of the training data.17

3. The “negative gradient” (sometimes called the “pseudo-residuals”) is
computed. Just like with usual residuals, each fitted value is subtracted
from its corresponding observed value of 1 or 0. The residual is a
quantitive outcome variable within the algorithm: (1�p) or �p, where
p is the overall proportion coded as “1.”

4. Using the randomly-selected observations, a regression tree is grown to
fit the pseudo-residuals.18

5. The conditional mean in each terminal node is the estimate of the
probability of failure.

6. The fitted values are updated by adding to the existing fitted values
the new fitted values weighted to get the best fit.

17The goal is much the same as the sampling with replacement used in random forests.
A smaller sample is adequate because when sampling without replacement, no case is
selected more than once; there are no “duplicates.”

18The procedure is much the same as for classification trees, but the fitting criterion is
the error sum of squares or a closely related measure of fit.
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7. Steps 2 through 7 are repeated until the fitted values no longer improve
by a meaningful amount. The number of passes can in practice be
quite large (e.g., 10,000), but unlike random forests, stochastic gradient
boosting can overfit. Some care is needed because there is formally no
convergence.

8. The fitted probability estimates can be transformed into outcome classes
just as they were for logistic regression.

9. When forecasts are needed for new cases, they are constructed from the
aggregated fitted values and their relationships with the predictors.

Like random forests, stochastic gradient boosting capitalizes on random
samples of the training data, adaptive fitting tree by tree, and aggregation
over trees. However, asymmetric costs can only be introduced at the end
when probabilities are transformed into classes. Experience to date suggests
that it can forecast about as well as random forests.

4.4 A Simulation

Logistic regression can forecast well when it is able to capture the data
structure. However, logistic regression is not adaptive and depends on the
researcher to specify an e↵ective model. Important nonlinearities and inter-
action e↵ects must be anticipated and included using the available predictors.
If the researcher lacks the requisite insight or data, logistic regression will nec-
essarily stumble. In contrast, adaptive procedures such as random forests or
stochastic gradient boosting can shine because both algorithms are designed
to search for structure with each pass through the data.

Figure 4 shows a fictitious dataset constructed to illustrate when logis-
tic regression will perform poorly and random forests or stochastic gradient
boosting will perform well.19 It is by intent a worst case scenario for logis-
tic regression and is not meant to represent in general the relative merits
of the forecasting competitors. We are trying to address why nonparamet-
ric methods can forecast better than parametric methods. The exercise is
didactic.

19The lessons learned can be applied far beyond logistic regression to any parametric
regression approach. The lessons also apply to a wide range functions that have clear
structures, but are very di�cult for parametric regression models to capture.
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Figure 4: A Very Challenging Classification Example

There are 100,000 observations. The outcome is binary. Red is coded 1
and blue is coded 0. There are two predictors. The 2-dimensional predictor
space contains a blue area that is homogeneously successes and two red areas
that are homogeneously failures. The graphical conventions are no di↵erent
from those used for the earlier figures except that the colored circles for
individual observations are replaced by solid colors for di↵erent regions. It
is as if we have printed a very large number of overlapping red circles and a
very large number of overlapping blue circles. However, the data structure
is far more complex because the blue region has red regions to its left and
its right. Complex data structures of this sort are routinely analyzed in the
classification literature (Hastie et al., 2009), but usually with many more
than two predictors so that visualizations such as Figure 4 are unavailable.
Any researcher trying to arrive at the correct parametric model from an
examination of a scatter plot would necessarily be flying blind.

The surface was built by first drawing one predictor from a uniform dis-
tribution. The second predictor was constructed as a power function of the
first. Then the predictor space was partitioned to show an interaction e↵ect:
both predictors had be high or low for the area to be red. That is, there are
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nonlinear e↵ects and an interaction e↵ect. Because each of the three regions
is perfectly homogeneous, the data provide a clear and compelling signal that
a good classifier should be able to accurately detect.

After the fact, one might overlay the following subject-matter account.
The outcome is whether or not a parolee finds employment. The blue area
contains successes and the red area contains failures. On the horizontal axis
is age in years. The young and the old do not do well. The vertical axis is
years of education. The association is not strong but parolees with a lot of
education or very little do slightly better. In addition, when the educational
level is higher, the best ages for finding work are older.20

Why might such patterns occur? The kinds of positions for which parolees
apply and the kinds of employers who would hire them represent a very
limited subset of all jobs. By and large, the positions will involve physical
labor for which not much experience or skill is required. Pay will be low and
the work will be hard. Younger parolees may not be inclined to seek such
positions, and older parolees may be incapable doing the work. Education
may be largely irrelevant for most of the jobs a parolee will seek. But, those
who have very little education may correctly target their job search only
for menial positions. Those with more education may correctly understand
that they have a wider range of employment options. Finally, having more
education may give some older workers, who would have di�culty working at
demanding menial jobs, the chance to take entry level white collar positions
(e.g., taking orders and making change at fast food restaurants).21

This post hoc account may well be wrong, perhaps very wrong. The intent
is to provide a less abstract setting in which to think about each contestant’s
performance. By itself, the story has no impact whatsoever on how well
a given classifier performs. Any good classifier should forecast with near
perfect accuracy. Unlike in real data, there is no noise.

When logistic regression is used, both regression coe�cients are virtually
zero.22 Logistic regression is unable to extract any useful information from

20Plots of this sort may be unfamiliar and at first di�cult to interpret. For the main
e↵ects, one has to do an eyeball integration over the variable whose role is not being
described. For example, to gauge the marginal association between age and employment,
one must consider vertical slices of the data and what fraction of each area is blue. Similar
reasoning applies to years of education, but now the slices are horizontal.

21Some preliminary analyses we are doing for the program “Ready, Willing & Able”
supported by the Doe Fund, are consistent with this account.

22The two regression coe�cients are -.03 and -.01. Even with 100,000 observations, one
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the two predictors. All that remains is the intercept, which is e↵ectively the
logit of the outcome variable’s proportion of reds (i.e., .80). The distribution
of the predicted probabilities ranges from .7958 to .8022. The predicted
probabilities have almost no variability.

For didactic purposes and with no important loss of generality, we assume
that the costs of false negatives are the same as the costs of false positives.
The corresponding threshold of .50 is applied. It follows that forecasting
error is minimized by always predicting red. 20% of the time the forecast
would be wrong. The true reds would be forecasted with 100% accuracy,
and the true blues would be forecasted with 0% accuracy. Table 1 shows the
results.23

Predict Blue Predict Red Model Error
Actual Blue 0 20078 1.0
Actual Red 0 79922 0.0

Table 1: Logistic Regression Confusion Table Using Simulated Test Data

Suppose a researcher is astute enough to include in advance the product
of the two predictors to capture an interaction e↵ect. Our reading of criminal
justice forecasting applications is that such interactions are rarely used, but
it is useful to see how logistic regression performs when given an especially
good opportunity to deliver.

Table 2 shows the results. Although there are now nonzero regression
coe�cients for all three regressors, there are still no predicted probabilities
smaller than .5. As before, forecasting error is minimized by always forecast-
ing red. Nevertheless, there is some meaningful information in the predicted
probabilities, and with cost ratios that weight forecasting errors for blue cases
more heavily than for red cases, some blue cases will be correctly predicted.24

For example, if a cost ratio of 4 to 1 is used, actual blues and actual reds are

cannot reject the null hypothesis of 0.0 for either. In an odds multiplier metric, both
coe�cients are very close to 1.0.

23Other thresholds would not change the performance of logistic regression. A threshold
a very little bit below .80 would allow some blues to be correctly forecasted. The price
would be a commensurate increase in reds forecasted incorrectly. Virtually no predictive
information from the predictors is being used. The predictors might as well be ignored.

24The predicted probabilities now range from .5333 to .9384.
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both correctly forecasting about 2/3rds of the time. That may seem quite
good, but for these data the appropriate target is perfection.

Predict Blue Predict Red Model Error
Actual Blue 0 20078 1.0
Actual Red 0 79922 0.0

Table 2: Logistic Regression with Interaction Confusion Table Using Simu-
lated Test Data

How does an adaptive machine learning procedure perform? For illustra-
tive purposes, we take random forests as our machine learning champion.25

Table 3 shows the results for random forests assuming equal costs. With
respect to the cost ratio, we are comparing apples to apples. The same
two predictors are used, but there is no product variable for an interaction
e↵ect. The researcher using random forests is not allowed to be as clever
as the researcher using logistic regression — random forests begins with a
model specification disadvantage. Still, random forests is just about perfect.
Given either outcome, random forests forecasts correctly more than 99% of
the time. The failure to be literally perfect results from randomness in the
random forest algorithm itself.

Predict Blue Predict Red Model Error
Actual Blue 19975 102 0.005
Actual Red 92 79830 0.001

Table 3: Random Forests Confusion Table Using Simulated Test Data

The implications of this forecasting contest are clear. When the data
structure is complex, machine learning procedures can perform very well.
An adaptive process that “learns” from data can be very e↵ective. This is

25We used the procedure randomForest in R, originally written by Leo Breiman and
Adele Cutler and ported to R by Andy Liaw and Matthew Wiener. To the best of our
knowledge, there is no implementation of random forests in any of the popular statistical
packages such as SPSS, STATA, or SAS. Salford Systems has a procedure they call random
forests, but the source code is proprietary, and it is di�cult to know exactly what is being
done. Also, according to the current Salford Systems website, the available version of
random forests will not run on a Mac computer.
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precisely what the large literature in statistics and computer science says.
Logistic regression and other parametric forecasting procedures will not per-
form as well unless the researcher is able to construct a parametric model
that captures all of the significant features of the data structure. As already
noted, this can be a daunting task.

5 An Empirical Example

We turn now to analyses of real data. The dataset was selected to be typ-
ical of those recently used in parole or probation settings. Recall, however,
that it is very di�cult with real data to arrive at results that are broadly
generalizable.

5.1 Forecasting Arrests for Serious Crimes

The data address how well parolees manage under supervision. There are
20,000 observations in the training data and 5,000 observations in the test
data. We consider whether an individual is arrested for a serious crime within
2 years of release on probation. Serious crimes include murder, attempted
murder, rape, aggravated assault, and arson. About 13% fail by this defini-
tion. Such crimes are of widespread concern. Static and dynamic predictors
include:

1. Date of Birth;

2. Number of Violent Priors as an Adult;

3. Earliest Age for a Charge as an Adult;

4. Total Number of Priors as an Adult;

5. Earliest Age for a Charge as a Juvenile;

6. Total Number of Priors as a Juvenile;

7. Number of Charges for Drug Crimes as an Adult; and

8. Number of Sex Crime Priors as an Adult.
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There is nothing special about these predictors. They represent the usual
kinds of information that is routinely available on parolees when they begin
their supervision. From past experience, they can make important contribu-
tions to forecasting accuracy (Berk, 2012).

We first apply logistic regression to the training data. A threshold of .135
is imposed on the predicted probabilities in order to arrive empirically at a
5 to 1 cost ratio of false negatives to false positives. Table 4 is the confusion
table that results when the model is applied to test data. From the column
on the far right, about 44% of the true failures are misclassified and about
32% of the true successes are misclassified. The forecasting accuracy is within
the range of recent studies with similar data (Berk, 2012) and could well be
useful for decision-makers.

Predict Fail Predict No Fail Model Error
Actual Fail 378 302 0.444

Actual No Fail 1385 2935 0.321

Table 4: Logistic Regression Test Data Confusion Table for Serious Crime

Table 5 is the confusion table for random forests using the test data. The
procedure was tuned to also arrive at a cost ratio of about 5 to 1 for false
negatives versus false positives. From the column on the far right, about 37%
of those who actually fail are incorrectly identified and about 28% of those
who actually do not fail are incorrectly identified. Forecasting accuracy for
random forests appears to be superior.

Predict Fail Predict No Fail Model Error
Actual Fail 427 253 0.372

Actual No Fail 1196 3124 0.277

Table 5: Random Forests Test Data Confusion Table for Serious Crime

Table 6 is the confusion table for stochastic gradient boosting using the
test data.26 A threshold of .13 was used on the predicted probabilities from

26We used the R procedure gbm, written by Greg Ridgeway. There are several tuning
parameters that can make a di↵erence, and we are not certain that the comparisons are
fully fair. To the best of our knowledge, there is no implementation of stochastic gradient
boosting in any of the popular statistical packages.
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the training data to empirically arrive at a cost ratio of about 5 to 1. From the
column on the far right, about 42% of those who actually fail are incorrectly
identified and about 32% of those who actually do not fail are incorrectly
identified. Stochastic gradient boosting does appreciably better than logistic
regression when forecasting failures, but only slightly better when forecasting
successes.

Predict Fail Predict No Fail Model Error
Actual Fail 396 284 0.418

Actual No Fail 1361 2459 0.315

Table 6: Stochastic Gradient Boosting Test Data Confusion Table for Serious
Crime

It appears that across the three tables, random forests performs better
than logistic regression and stochastic gradient boosting. This is consistent
with published studies (Berk, 2012). But one must not overstate what is
learned from the comparisons we report. It is di�cult to guarantee that
after tuning, one is necessarily comparing apples to apples. We have tried
to insure that for all practical purposes, the false negative to false positive
cost ratios are the same for all three procedures. But the cost ratios are
not identical, and it is essentially impossible to make them so. The test
data and training data are di↵erent random splits of the available dataset.
Tuning done on the training data will carry over a bit di↵erently to the test
data, depending on the forecasting procedure. Moreover, each procedure was
tuned with its own special set of tuning parameters. There is no guarantee
that the results are fully comparable. Indeed, it is not even clear how to
define such a thing.

Another important issue is whether the di↵erences are large enough to
matter. As already explained, that judgement depends on the application.
For example, the agency from which these data were obtained supervises
about 40,000 individuals on probation each year. About 5000 of these in-
dividuals are arrested for a serious crime within 24 months, most within
less than a year. For failures, the di↵erence of approximately 7% between
the accuracy of logistic regression compared to random forests translates into
about 350 serious crimes. Roughly 50 of those will be homicides or attempted
homicides, the perpetrator of which could be identified in advance by random
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forests, but not by logistic regression. In this instance, stakeholders found
the practical di↵erence in forecasting accuracy dramatic.

If one is looking for firm conclusions about forecasting accuracy from our
results and others, it is almost certain that properly applied, random forests
will always do at least as well as logistic regression and much of the time
meaningfully better. Stochastic gradient boosting will do at least as well as
logistic regression, but is somewhat less likely to dominate it.

There are several other reasons why random forests should be the fore-
casting method of choice, given currently available alternatives. For this
illustration, the success category included individuals who were arrested for
crimes not defined locally as “serious” and individuals not arrested at all.
This is, of course, less than ideal. In fact, one of the goals of the supervising
agency was to identify low risk o↵enders who could be supervised less inten-
sively with no increased risk to public safety. Resources recaptured from the
low risk o↵enders could then be allocated to the high risk o↵enders. To ad-
dress this policy preference, random forests was applied using three outcome
categories: an arrest for a serious crime, an arrest for a crime that was not
serious, and no arrest at all. Three outcome classes are not an option for
logistic regression. Forecasting accuracy for the low risk o↵enders was very
good, implying that about half of the agency’s case load could be minimally
supervised. A reorganization of the supervisory practices followed, and a
subsequent evaluation showed that re-arrest rates for the low risk individuals
were not higher than under the previous, more intensive supervision regimes
(Berk et al., 2010).

Random forests also provides output that can help explain how the fore-
casting works in practice. Recall, logistic regression coe�cients, for instance,
are estimated under equal costs and can be misleading if the costs of false
negatives and false positives di↵er. In place of regression coe�cients, ran-
dom forests provides estimates of each predictor’s contribution to forecasting
accuracy. How this is done is beyond the scope of the paper, but is explained
in many published papers and texts (e.g., Brieman, 2001a). Figure 5 is an
example of the output that easily can be obtained.

Date of birth makes the largest contribution to forecasting accuracy for
those who are arrested for a violent crime. The value of a little over .08 means
that if date of birth is not allowed to contribute to forecasting accuracy, model
error increases from about .37 in Table 5 to .45. The contributions of all other
variables are smaller, with sexual priors contributing little or nothing.
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Figure 5: Random Forests Variable Importance Plot

Stakeholders have found this kind of information very useful. However,
forecasting accuracy does not identify risk factors in the usual sense. A given
predictor will often be transformed in many di↵erent ways, including as a
component of interaction e↵ects. All of these roles are combined when con-
tribution to forecasting accuracy is computed. One has in test data the net

association between a given machine learning input and the outcome being
forecasted. There is currently no way to represent each role separately.27

There are also “partial response plots” showing how each predictor is
related to each outcome class, with all other predictors held constant. Again,
the details are beyond the score of this paper, but easily found elsewhere (e.g.,
Berk, 2012). Figure 6 is an example.

The predictor is the age at which the first arrest as an adult occurred.
The response is being subsequently arrested for a serious crime while on
probation. Units on the vertical axis are centered logits. The details need
not concern us here — movement in the vertical direction means that the

27Recall that each tree in the random forest can transform each predictor di↵erently.
If there are, for instance, 500 trees, a given variable may be transformed in 500 di↵erent
ways.
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Figure 6: Random Forests Partial Response Plot for “Adult First Charge
Age”

probability of failure increases.
The figure shows that the chances of an arrest for a serious crime are

high for parolees whose first arrest as an adult occurred at a very young age.
Starting in the late teens, those chances decline rapidly. For parolees whose
first arrest occurred after age 30, increases beyond that in age of first arrest
do not matter. In random forests, partial response plots are available for all
predictors. For categorical predictors, the plots are bar charts.

Just as with contributions to forecasting accuracy, partial plots also do
not identify risk factors in the usual sense. Each plot captures an average
across trees in the forest and across each term in which that predictor is used.
So age at first arrest is related to failure on parole in the manner shown in
Figure 6, but all sorts of potentially important relationships involving that
variables (e.g., interaction e↵ects with gender) are masked.

6 Some Implications for Use

The forecasting output from machine learning classifiers is a forecast for given
individuals and the sorts of descriptive output just discussed. Decision-
makers “drop” an individual’s predictor values into an algorithm, and a
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forecast is computed in real time. There is no explicit use of risk factors,
whether weighted or not. Thus, the algorithm must be live on some com-
puter when forecasts are needed. Ideally, that computer is part of a network
connected electronically to databases containing the predictor values. Then,
a decision-maker may need only to enter an individual’s unique ID number
for appropriate predictor values to be properly downloaded into the machine
learning algorithm. Experience to date indicates that such arrangements are
well within the capabilities of IT personnel in many criminal justice settings
(Berk, 2012).

7 Conclusions

Complex decision boundaries pose a significant challenge for logistic regres-
sion or any other parametric classifier. To forecast well, a researcher must
understand the nature of the complexity, be able to properly translate that
knowledge into an algebraic expression, and then have the data to construct
an appropriate model. These are daunting requirements for criminal justice
applications.

In contrast, adaptive machine learning procedures have the capacity to
empirically discover patterns in the data and construct suitably complex de-
cision boundaries. The requirements are a conventional menu of predictors
and a large enough sample to exploit them. The tree-based machine learning
procedures we have reviewed can then perform well and have several other
important assets that logistic regression lacks: the capacity for outcome cat-
egories with more than two classes, a natural way to build in the asymmetric
costs of forecasting errors, and a variety of instructive output that builds in
asymmetric costs.

In practice, performance di↵erences between logistic regression and most
machine learning procedures can be small if the true decision boundary is
simple. But how would one know? If logistic regression is used because
a simple decision boundary is incorrectly assumed, substantial forecasting
accuracy can be forfeited. In criminal justice settings where real lives can be
at stake, the consequences could be significant. Why take the risk?
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