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Single-firm event studies play an important role in both scholarship and litigation

despite the general invalidity of standard inference. We use a broad cross-section of

2000–2007 CRSP data and find that the standard approach performs poorly in terms

of both Type I and Type II error rates. We discuss a simple-to-use alternative, the SQ

test, based on sample quantiles of the empirical distribution of pre-event fitted excess

returns, which has correct asymptotic Type I error rate. Results suggest that the test

will be useful in studying the impact of firm-specific events such as regulation, anti-

trust rulings, and corporate or securities litigation. (JEL: C12, C14, G00, G14, K00,

K22)

1. Introduction

Event studies have been used widely to examine proposed mergers, eval-

uate takeover policy, and assess the effects of a wide range of laws and

regulations affecting corporations.1 Prominent scholars writing in law and

We thank the editor and two anonymous referees, as well as Martijn Cremers, Ezra
Friedman, Kei Hirano, Al Klevorick, David Tabak, Justin Wolfers, Josh Wright, and
participants at the 2007 Future of Securities Fraud Litigation conference at Claremont
McKenna College, Northwestern University Law School, Stanford Law School, the Uni-
versity of Illinois Law School, and the University of Pennsylvania Law School for helpful
comments.

1. Other recent applications go beyond standard corporate finance topics:
Dellavigna and La Ferrara (2010) uses event studies as a forensic tool to assess whether
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finance have emphasized the empirical value of event-study methodology,

with Bhagat and Romano (2002, p. 141) writing that “Event studies are

among the most successful uses of econometrics in policy analysis,” and

Fama (1991) attributing most of what we know empirically about corpo-

rate finance to event studies. Most event study applications involve many

firms or many events, for which standard statistical inference methods are

appropriate.

This paper concerns single-firm event studies, which are especially

important in the context of securities litigation. A plaintiff alleging securi-

ties fraud under SEC Rule 10b-5 must establish six basic elements: presence

of a material misrepresentation or omission; scienter; connection with the

sale or purchase of a security; reliance; economic loss; and loss causation

(See Dura Pharmaceuticals v. Broudo, 544 U.S. pp. 336, 341–42). Event

studies can be used to address directly the materiality and loss causation

elements. Additionally, financial economics is highly relevant to establish-

ing reliance, which can be tightly linked to the appropriateness of using

event studies to address materiality and loss causation. We discuss these

issues in Section 2.1.

Below we discuss statistical reasons why the typical approach to event-

study methodology is flawed in important cases. The standard approach in

testing for statistical significance of event effects involves comparing test

statistics to critical values associated with the standard normal distribution.

This methodology is justified when excess returns themselves come from a

normal distribution, but there is considerable evidence against normality.2

Alternatively, the standard approach is justified when there are many event

dates, and when the researcher is comfortable confining attention to average

effects across these many dates. But in the application on which we focus,

this fact may be unavailing. For example, securities lawsuits may involve

only a relatively small number of event dates on which corrective disclo-

sures or alleged misrepresentations occurred. To the extent that plaintiffs

must separately establish significant securities price movements on each of

firms violate United Nations weapons embargoes, and Dube et al. (2011) study the effects
of coups and related events on stock returns for affected companies.

2. For an early reference on this point, see Brown and Warner (1985); Ford and
Kline (2006) present a more recent discussion. We present extensive new evidence to this
effect in Appendix A.
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these dates, they will have to conduct a collection of single-event studies for

each date of interest. For such applications, the standard approach may lead

to substantial inferential errors–which is what we find to be the case in the

data we use below. Our focus in this paper is on evaluating the performance

of an alternative approach to inference. We call this alternative the “SQ”

test, since it involves using sample quantiles of the estimated excess returns

distribution to estimate the critical value for the event effect. The SQ test

is simple to use and has excellent theoretical properties. Most notably, it

allows analysts to fix the Type I error rate at any chosen level by choosing

an appropriate sample quantile to estimate.

To illustrate the SQ test for the Type I error rate α = 0.05, suppose a firm

discloses that its past quarterly earnings were substantially below the level

claimed in an earlier earnings statement. A group of shareholders then files

an action under SEC rule 10b-5. To establish materiality and loss causation,

the plaintiffs must present evidence sufficient to convince the court that the

corrective disclosure reduced the value of the firm’s stock. To use the SQ

test, an expert on either side would obtain data on the security’s daily return

and the market return for both the event date and a set of, say, n = 100 pre-

event observations. She would then use ordinary least squares to estimate

the regression of the firm’s return on a constant, the market return, and

an event dummy, so that the estimated coefficient on the event dummy is

the estimated event effect. All of these steps are taken in both the standard

approach and in ours.

The standard approach involves comparing the event dummy’s t-statistic

to critical values based on the standard normal distribution, or the Student’s

t distribution (in practice there will be little difference for standard sample

sizes). To test the null hypothesis of a zero event effect against the lower-

tailed alternative, an analyst using the standard approach would reject at

level 0.05 if the t-statistic were less than −1.64 (i.e., negative and larger

in magnitude that 1.64). By contrast, implementing the SQ test involves

calculating the fitted residuals from the estimated model, sorting them, and

finding the fifth most negative value among the nonevent dates. The analyst

would reject the null hypothesis if the coefficient on the event dummy were

less than or equal to this value.

This simple example illustrates how easy the SQ test is to use in prac-

tice. Intuitively, the test works because the fifth-most negative element in
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a sample of 100 randomly drawn observations is the sample 0.05-quantile,

and sample quantiles are consistent estimators of population quantiles (see,

e.g., Walker, 1968). Unsurprisingly, then, the SQ test’s asymptotic size, or

Type I error rate, equals the desired significance level, in this case 0.05.

While Conley and Taber (2011) provide formal results establishing this fact,

our paper is the first to systematically explore the performance of the SQ

test in the corporate finance-event study context. In addition, we offer both

interesting empirical results and what we believe to be new analytical results

concerning the SQ test’s power relative to the standard approach.

The rest of this paper proceeds as follows. We discuss both the event

study literature and the econometric literature related to the SQ test in

Section 2. In Section 3, we then describe our data, which come from the

Center for Research in Security Performance’s (CRSP’s) database for the

years 2000–2007. In Section 4, we introduce a variant of the typical sta-

tistical model used in event studies undertaken in securities lawsuits. We

use analytical arguments to illustrate the importance of normality of the

distribution of excess returns for achieving valid inference, even asymptot-

ically. We quantify the poor Type I error rate performance of the standard

approach, showing that this performance is systematically related to esti-

mated quantiles of the firms’ estimated excess returns distributions.

In Section 5, we provide a general discussion of the SQ test and then

present Monte Carlo results concerning its Type I error rate. We find that

the SQ test performs very well in samples with 100 pre-event dates. We

then turn, in Section 6, to the issue of power. We show in Section 6.1 that

the SQ test has relatively high power: it rejects the null hypothesis of no

event effect with relatively substantial frequency when there really is an

event effect. This good power performance is important because there is

sometimes a tradeoff between size and power: controlling the probability

that a test wrongly rejects may force analysts to reject less often when the

null hypothesis is actually false. Interestingly, we show analytically that

on a size-corrected basis, the standard approach and the SQ test have the

same asymptotic power. Thus, as a theoretical matter, the standard approach

can have better power than the SQ test only in cases when the standard

approach’s true Type I error rate differs from the desired significance level.

In Section 6.2, we present evidence that, in our data, the standard approach’s

downward size distortions cause it to reject true effects less frequently than
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does the SQ test. Thus, in the empirically relevant case when no size cor-

rection is made to the standard approach, the SQ test performs better in

our data.

In Section 7, we discuss two potential extensions, involving multiple

firms and multiple events. We conclude in Section 8.

2. Relationship to Previous Literature

We begin this section by discussing the literature on event studies and

corporate finance. We then discuss the relationship of our proposed sample

quantile test to existing work in the statistics and econometric literatures.

2.1. Event Studies and Securities Litigation

Event studies have been used in the academic literature to analyze many

corporate finance issues, including the effects of earnings restatements and

the adoption of various corporate governance mechanisms on firm value.

They also play a prominent role in merger analysis and antitrust policy in

both the academic and regulatory spheres. For example, law and economics

scholars have used event studies to examine the effects of state-level legal

changes (e.g., takeover statute enactments), as well as federal regulatory

changes (e.g., The Sarbanes–Oxley Act and the Private Securities Litigation

Reform Act). Khotari and Warner (2007) offer an excellent recent review

of the event-study literature, while Campbell et al. (1997, p. 149) provide a

very useful textbook discussion.

The popularity of event studies derives from their simple and elegant

method of controlling for general market effects and, possibly, other rele-

vant covariates, thereby isolating the causal effects of events such as a law’s

passage, corporate governance adoption, and so on. Event-study methodol-

ogy also provides a framework for determining whether estimated effects lie

outside the range that could be expected due to ordinary random variation

in stock returns, allowing researchers to determine whether the measured

effect of an event is statistically significant.

As large a role as event studies play in empirical financial economics and

policy analysis, their importance in litigation (e.g., under SEC Rule 10b-5),

may be even greater. In Basic v. Levinson (1988), 485 U.S. 224, the Supreme
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Court held that there is a (rebuttable) presumption that public securities

markets are informationally efficient. Under this presumption, new pub-

lic information is absorbed rapidly into securities prices. Thus, any fraud-

ulent statement or omission is presumed to be quickly capitalized into the

price of publicly traded securities. As a consequence, unless the presump-

tion of informational efficiency is rebutted, plaintiffs can claim reliance on

the allegedly fraudulent statement or omission simply by stating that they

relied on the market price, sparing them the obligation of establishing direct

reliance on the allegedly fraudulent statement or omission (the sufficiency

of asserting reliance on the market price is the source of the term “fraud-

on-the-market”).

For an omitted fact (or misrepresentation) to be material under Supreme

Court precedent, “there must be a substantial likelihood that the disclosure

of the omitted fact would have been viewed by the reasonable investor as

having significantly altered the ‘total mix’ of information made available”

(Basic Inc. v. Levinson, 485 U.S. 224, 231–32 (quoting TSC Indus., Inc.

v. Northway, Inc., 426 U.S. 438, 449).) Loss causation requires that what-

ever loss the plaintiff alleges she has suffered was actually caused by the

allegedly material mis-statement or omission, rather than by something else.

Reliance, materiality, and loss causation are linked, because each is con-

nected to the question of whether an alleged misrepresentation affected a

security’s price:3

• The Basic Court held that the presumption of reliance is rebutted if a

defendant can show that the alleged misprepresentation did not affect

3. We do not mean to suggest that reliance, materiality, and loss causation are
indistinguishable elements for Rule 10b-5 purposes. Indeed, the Supreme Court in Erica
P. John Fund, Inc. v. Halliburton Co., 131 S. Ct. 2179, 2185–6 (2011) (holding that loss
causation need not be proved at the class certification stage) emphasized that it is pos-
sible for plaintiffs to gain the benefit of the fraud-on-the-market theory’s rebuttable pre-
sumption of reliance without also establishing loss causation. To establish the rebuttable
presumption, plaintiffs need show only that the alleged misrepresentations were public,
that the security in question traded in an informationally efficient market, and that trans-
actions in question occurred after the alleged misprepresentation but before revelation
of the true state of affairs. On the other hand, since transactions might fit this pattern
even when fraud revelation has no effect on a security’s price, it is possible to establish
reliance via the Basic presumption without being able to use an event study to establish
loss causation or materiality.
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the price received or paid by the plaintiff, or the plaintiff ’s decision

to trade.4

• If the security price was unaffected by an alleged misrepresentation,

then the misrepresentation is likely not the sort of thing a reasonable

investor would view as important information, and is therefore not

material.5

• If the security price was unaffected by an alleged misrepresentation,

then the alleged misrepresentation cannot have caused any loss suf-

fered by the plaintiff.

Plaintiffs seeking to meet the reliance, materiality, and loss causation

elements of a securities fraud case can use event study evidence to establish

that a security’s price movement was associated with allegedly fraudulent

statements. According to one Arizona federal district court judge, “[t]he

tool most often used by experts to isolate the economic losses caused by the

alleged fraud is the event study,” (In re Apollo Group Inc. Securities Litiga-

tion, 509 F.Supp.2d 837, 844 (D.Ariz., 2007)), and some courts have even

effectively required the use of an event study for these purposes (See, for

example, In re Oracle Securities Litigation, 829 F. Supp. 1176, 1181 (N.D.

Cal, 1993); In re Executive Telecard, Ltd. Sec. Litig., 979 F. Supp. 1021

(S.D.N.Y. 1997)). Finally, the Supreme Court emphasized in Dura Pharma-

ceuticals, Inc. v. Broudo that plaintiffs must “adequately allege and prove

4. Basic Inc. v. Levinson, 485 U.S. 224, 248–9 (“For example, if petitioners could
show that the ‘market makers’ were privy to the truth about the merger discussions here
with Combustion, and thus that the market price would not have been affected by their
misrepresentations, the causal connection could be broken: the basis for finding that the
fraud had been transmitted through market price would be gone. Similarly, if, despite
petitioners’ allegedly fraudulent attempt to manipulate market price, news of the merger
discussions credibly entered the market and dissipated the effects of the misstatements,
those who traded Basic shares after the corrective statements would have no direct or
indirect connection with the fraud.”) (footnotes omitted).

5. See, e.g., Oran v. Stafford, 226 F.3d 275, 282 (2000, CA 3rd Cir) (“when a
stock is traded in an efficient market, the materiality of disclosed information may be
measured post hoc by looking to the movement, in the period immediately following
disclosure, of the price of the firm’s stock. Because in an efficient market the concept
of materiality translates into information that alters the price of the firm’s stock, if a
company’s disclosure of information has no effect on stock prices, it follows that the
information disclosed . . . was immaterial as a matter of law.”) (citation and quotation
marks omitted).
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the traditional elements of causation and loss” (Dura, 544 U.S. 336, 346

(2005)), which would entail alleging and proving “that Dura’s share price

fell significantly after the truth became known” (Id., at 347). The word

“significantly” suggests that event studies are a natural way to meet these

requirements, both for their ability to estimate the magnitude of any event

effects and for inferential purposes (i.e., testing statistical significance).

While many practitioners have used the standard approach to infer-

ence in this context, several authors have recently noted and attempted to

address the challenges of conducting inference with only a small number

of events. For example, in his study of American Express’s conversion to

limited-liabilty status, Weinstein (2008) considers parametric alternatives

to assuming normality of the excess-returns distribution. Klick and Sitkoff

(2008) use a Monte Carlo, re-sampling approach in the spirit of permuta-

tion and bootstrap testing. Finally, Hein and Westfall (2004) and Ford and

Kline (2006) use bootstrap re-sampling methods, which solves the standard

approach’s asymptotic inference problems via re-sampling techniques.6

2.2. Related Statistical and Econometric Literature

The SQ test is related to several strands of statistical and economet-

ric research: outlier detection, predictive tests of structural change, end-

of-sample instability tests, permutation and randomization inference, and

bootstrap-based inference. As we discuss in Appendix A.3, when there is

only one event, the estimated coefficient on the event-dummy in a mar-

ket model equals the predicted residual from estimating the model with-

out the event-date observation. The ratio of this coefficient estimate to the

reported standard error is the usual t-statistic. In the literature on regres-

sion diagnostics, this ratio is known as the studentized residual and is often

used as a measure of an observation’s “leverage” in estimating slope coeffi-

cients. The purpose of evaluating leverage is typically to decide whether to

omit an observation or otherwise address outlier influence for purposes of

improving the performance of slope-coefficient estimation. In the litigation-

event study context, this concern does not arise since the event date’s

6. We discuss the relationship between the bootstrap and the SQ test in Appendix
B of an earlier version of this paper, Gelbach et al. (2011).
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degree of leverage is interesting only for purposes of testing the size of the

event effect.7

In the econometrics literature, the single-firm, single-event context can

be thought of as a special case of a class of models considered by Conley and

Taber (2011). Conley and Taber’s model involves a treatment group with a

small number of cross-sectional observations affected by a policy change

and a large number of cross-sectional comparison-group observations not

affected. Our event date is analogous to their treatment group, and our set of

pre-event observations is analogous to their comparison group. Their size

results can easily be shown to apply to our context, and a specialization of

their Proposition 2 justifies the SQ test.8

However, Conley and Taber are primarily interested in estimating effects

in different contexts from ours, such as the effects of state-level policy

reforms on labor market outcomes. Thus, one contribution of ours is to show

that their theoretical results work well in the important context of event stud-

ies involving securities returns. An additional contribution of ours involves

the analysis of power. While Conley and Taber report interesting simula-

tion results concerning power (see their Table 3), they do not derive any

analytical results. In Section 6.1, we show that for single-event studies, the

SQ test and the standard approach have identical size-corrected power. This

means that if the SQ test has lower power than the standard approach, it is

only because the standard approach suffers from size distortions. We also

show that in our sample, observed power (i.e., the power of the test without

correcting size distortions) is generally better for the SQ test than for the

standard approach.

Besides Conley and Taber (2011), the econometric literature most

closely related to the SQ test is the literature on structural change. An early

example in this literature is Chow (1960), who shows how to test the null

7. For a discussion of leverage and influence, see Belsley et al. (2004).
8. We became aware of this aspect of their work after writing an earlier draft of

this paper that included our own proof that the SQ test’s asymptotic size is correct. An
additional paper of which we became aware after writing earlier drafts of this paper is
Simpson and Hosken (1998), who actually deploy the SQ test in an FTC working paper
concerning one industry-specific empirical application, though without exploring its sta-
tistical properties. According to the FTC website, parts of this paper were subsequently
published in Hosken and Simpson (2001) and Simpson (2001). Neither of those published
papers appears to use the SQ test.

 at U
niversity of Pennsylvania L

ibrary on January 17, 2014
http://aler.oxfordjournals.org/

D
ow

nloaded from
 

http://aler.oxfordjournals.org/
http://aler.oxfordjournals.org/


504 American Law and Economics Review V15 N2 2013 (495–541)

hypothesis that the (linear) regression relationship between y and X for the

next m2 observations is the same as for the first m1 observations, given

the normality of regression residuals;9 Chow’s focus was on testing whether

the coefficients are the same in the two periods. Since he assumes normal-

ity of all residuals, he effectively assumes away the problem we confront

here.

A variety of authors subsequently have explored the problem of test-

ing for structural breaks when the break point is unknown; for example,

see Andrews (1993). While this literature involves some similar statistical

issues to our present context, the break point of interest generally is known

in litigation-relevant event studies. An early paper focusing on cases with

known break points and allowing for nonnormality is Dufour et al. (1994).

Dufour et al consider a more general econometric framework than ours,

allowing for both multiple equations and nonlinearity. However, as Andrews

(2003) has noted, their three approaches to estimating critical values all

have disadvantages (assumed normality, asymptotic conservativeness, and

the need to choose values of ancillary parameters). Andrews (2003) devel-

ops a test statistic using predicted end-of-sample residuals. Like the SQ

test, his test’s critical values are estimated using the empirical distribution

of predicted residuals from earlier in the sample. While his focus is on two-

sided testing, his test and theoretical arguments could easily be modified to

accommodate one-sided testing as well.

Another related literature involves permutation and randomization

inference. Results in this literature rest on the fact that under the null hypoth-

esis of no event effect, the event-date excess return comes from the same

distribution as pre-event excess returns. For more on this literature, see

Rosenbaum (2002).

A final related literature involves bootstrap-based inference. Bootstrap

test statistics and critical values are computed by replacing an unknown dis-

tribution with an empirical distribution function that consistently estimates

the unknown distribution. Hein and Westfall (2004, HW) evaluate boot-

strap procedures proposed by Chou (2004), Hein et al. (2001), and Kramer

(2001). As we do, HW focus on inference in the single-event case, raising

9. Chow cites Mood (1950, pp. 304–05) as containing this result for the special
case m2 = 1.
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similar concerns to ours vis-a-vis the standard approach.10 HW provide both

solid heuristic arguments and Monte Carlo evidence that the procedures

they evaluate perform well in the single-firm case under both normal and

some parametric nonnormal data-generating processes. While HW provide

evidence on the S&P 500 and several insurance-based subindexes, we pro-

vide comprehensive empirical evidence for a wide array of securities. As

noted above, we also derive results that allow analytical comparisons, across

the standard approach and the SQ test, of both estimated asymptotic Type

I error rates and asymptotic power.11 For a discussion of the formal rela-

tionship between the SQ test and the specific procedure HW use, which is

a form of residual bootstrap, see Appendix B of our earlier working paper,

Gelbach et al. (2011).

3. Data

We use data on securities returns from the widely used Center for

Research in Security Performance (CRSP) database, available for aca-

demic use through the webiste of the University of Pennsylvania’s Wharton

Research Data Services. In order to conduct the Monte Carlo study detailed

below, we downloaded all daily observations from the CRSP database for

the years 2000–2007. According to p. 10 of the CRSP Data Description

Guide, which is available at the Wharton Research Data Services website,

the securities included in this sample include common stocks certificates,

American Depositary Receipts (ADRs), shares of beneficial interest units

(depository units, units of beneficial interest, units of limited partnership

interest, depository receipts, etc.), closed-end mutual funds, foreign stocks

on NYSE, AMEX, NASDAQ, and NYSE Arca, Americus trust components

(primes and scores), HOLDRs trusts, and REITs (real estate investment

trusts).12

10. Much of HW’s interest lies in the single-event, multi-firm case. While our
focus is primarily on the single-firm case, we do discuss the multi-firm case in
Section 7.1.

11. HW offer analytical results on the asymptotic Type I error rate of the standard
approach when the number of firms is large and all firms have the same excess returns
distribution. Such results are interesting, but they offer no guidance in the single-firm
case that interests us here.

12. We have also re-computed our results for a subset of observations that includes
only common stocks ever traded on the NYSE, AMEX, or NASDAQ during our period.
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Our initial data draw includes 14,587,459 daily observations. We kept

only observations for which the daily returns (ret) and value-weighted

returns including dividend (vwretd) variables were nonmissing, eliminat-

ing 219,774 observations. We then drew, at random, five million observa-

tions. Of these observations, we kept only those associated with securities

for which at least 500 daily observations remained; this criterion elimi-

nated 303,746 observations. The resulting sample includes 4,696,254 daily

returns observations on 3,050 securities, for an average of 1,540 observa-

tions per security.

We then calculated security-specific market-return coefficient (com-

monly known as the “beta”) from a simple market model including a con-

stant and the market return variable. The daily fitted excess return is the

difference between the actual daily return and its predicted value based

on the market model, described in Section 4. The sample mean of fitted

excess returns in our sample is 0 by construction. The sample standard

deviation of all fitted excess returns is 0.040: shifting the distribution one

standard deviation to the left entails a reduction in a security’s value by

roughly 4%. In much of our analysis, we standardize fitted excess returns

by the standard deviation of firm-specific excess returns. This standardiza-

tion imposes mean-zero, standard deviation-one fitted excess returns at the

firm level, facilitating comparisons both across firms and to the standard

normal distribution.

4. The Basic Framework With One Firm and One Event

We begin our discussion in Section 4.1 by introducing the standard

model for daily securities returns; throughout, we use the terms “firm,”

“stock,” and “security” interchangeably. We focus in this section on the case

in which there is a single firm and a single event (we discuss extensions to

These results were qualitatively very similar to those reported below, so we do not include
them in the paper; we will provide these results on request. In addition, we found that
adding one or two lags of the market return to the market model—one way to address
nonsynchronous trading—does not eliminate the substantial variation across firms in
sample quantiles of the firm-specific excess distributions, which is the key driver of our
empirical results.
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the multiple-firm and multiple-event cases in Section 7). In Section 4.2, we

describe the standard approach to inference in event studies and detail the

inference problem that plagues it in the one-firm, one-event case.

4.1. The Basic Framework

Daily event studies involve a security’s daily return; we focus on the log

form, defined as

rs ≡ ln Ps − ln Ps−1, (1)

where Ps is the firm’s stock price on day s.13,14 Event studies typically use

a model like this one for firms’ daily returns:

r j
s = X j

s β
j + A j

s , (2)

where the superscript j indexes firms, the row-vector of data X j
s includes

1 and a measure of the market return for day s, and possibly other vari-

ables that might vary by firm; β j is a vector of parameters that must be

estimated; and A j
s is firm j’s day-s excess return, the component of the

observed return that cannot be explained by X j
s given the value of β j . Other

variables sometimes included in so-called factor models are measures of

firm size, the firm’s book-to-market equity, and momentum.15 For expo-

sition, we focus on the simple market model here, so we include only the

CRSP value-weighted portfolio as a nonconstant regressor. For concrete-

ness, write the market return variable as rmkt,s , so that Xs = [1, rmkt,s]. For

reference, Table 1 lists and defines the notation just described, as well as

other notation introduced below. For the moment, we focus only on (2) as

applied to a single firm, so we suppress the superscript j .

To account for the possibility of event effects, suppose that we have data

on rs and rmkt,s for dates s = 1, 2, . . . , n. On date e = n + 1, an event occurs.

13. We have omitted notation concerning split factors and dividends from (1); the
CRSP data we use do account for these factors.

14. Our results were qualitatively similar whether we used as the dependent vari-
able rs or Rs ≡ (Ps − Ps−1)/Ps−1 = exp[rs ] − 1, so we report only the log-form results.
We refer readers to our earlier working paper, Gelbach et al. (2011), for results using rs

as the dependent variable.
15. The three-factor model includes size and book-to-market variables in addition

to the market return (see Fama and French, 1992; Fama and French, 1993). Carhart (1997)
added a momentum variable, resulting in the four-factor model.
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Table 1. List and Description of Variables Used

n Number of pre-event observations in a generic event study
s, e Generic date (s), and event date (e = n + 1)

r j
s Firm j’s return on date s

rmkt,s Market return on date s
Xs The row vector (1, rmkt,s)

β j = (β
j

0 , β
j

1 )′ Usual column vector of coefficients
Ds Dummy variable indicating whether s = n + 1 = e (the event date)
γ j Event effect for firm j
n j Number of pre-event observations on firm j in our full sample, Ŝ j

A j
s Firm j’s composite excess return, including any event effect:

A j
s = D j

s γ + a j
s , for s = 1, 2, . . . , n j + 1

a j
s Excess return unrelated to event effect, s = 1, 2, . . . , n j + 1

â j
s Fitted excess return: OLS estimate of a j

s

ûs Standardized fitted excess return: â j
s /σ̂

j
a

F j True distribution of a j
s

F̂ j Empirical distribution function of â j
s in a sample of size n

F̂ j
n j Empirical distribution function of â j

s in full sample of n j observations

(i.e., Ŝ j )

G j , Ĝ j , Ĝ j
n j Analogous to F j , F̂ j , and F̂ j

n j except that we define the distributions

using standardized fitted excess returns, û j
s ≡ â j

s .

Ŝ j Sample of all n j observations on â j
s : Ŝ j = {â j

s }n j
s=1

β̂ j , γ̂ j OLS estimates of β j and γ j

σ
j

a , σ̂
j

a Standard deviation of a j
s and usual estimate based on OLS market model

estimation

σ
j

γ , σ̂
j

γ True standard error of γ j and usual estimate based on OLS market
model estimation

α Desired (nominal) significance level
zα α-quantile of standard normal distribution

y j
α and w

j
α α-quantiles of F j and G j

ŷ j
α and ŵ

j
α Sample α-quantiles of F̂ j and Ĝ j

�x� Integer c such that x − 1 < c � x .
ρ̄ j Monte Carlo rejection rate for firm j given desired α

c(α, n) Index of order statistic corresponding to sample α-quantile from sample
of size n: c(α, n) = �α × (n + 1)�.

To account for event effects, we re-write the day-s excess return variable as

As = Dsγ + as , where Ds is the event dummy variable (i.e., Ds = 1(s = e)),

and 1(·) is the indicator function that equals one when its argument is true

and zero otherwise. The parameter γ is the true effect of an event on the

level of the firm’s daily return, which could be either positive, negative, or

zero. The as term represents the part of the excess return that is unrelated to
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the event, so that As can be viewed as an event date-specific location shift

of as , with γ being the shift parameter.

We follow common practice and assume that all excess returns for pre-

event dates are iid conditional on the full set of regressors and come from

the same distribution, which we name F .16 Below, we will allow these true

excess returns distributions to vary across firms, in which case we call firm

j’s distribution F j . Throughout, we will assume that excess returns are con-

tinuously distributed, so that F is strictly increasing on its entire support.

We refer to the standard deviation of the excess returns distribution F as

σa . Given the common assumption that events affect only the level of the

daily return, it follows that ae, the part of the event-date excess return that

is unrelated to the event, also has distribution F . In sum, for any value y,

we have the model

rs = Xsβ + Dsγ + as, Pr(as � y|data, ) = F(y),

s = 1, 2, . . . , n + 1.
(3)

4.2. The Standard Approach to Inference

Using the so-called regression approach to estimating event effects, a

researcher estimates β and γ jointly using ordinary least squares (OLS)

estimation. She then evaluates the event’s effect by testing the null hypothe-

sis H0 : γ = 0 against some alternative hypothesis; for exposition, we focus

on the lower-tailed case, in keeping with our example of testing whether a

corrective disclosure reduces a firm’s market valuation.

The standard approach to carrying out hypothesis tests involves estimat-

ing (3) by OLS and comparing the usual t-statistic for γ̂ to critical values

based on the standard normal distribution (or the Student’s t distribution

with the appropriate degrees of freedom, though with large n, the difference

will be trivial). Let β̂ and γ̂ be the OLS estimates of β and γ , and let σ̂γ be

the square-root of the estimated variance of γ̂ . Then the t-statistic, t̂ , for test-

ing the null hypothesis of no effect is the ratio of γ̂ to σ̂γ . A researcher using

the standard approach will reject the null hypothesis against the alternative

16. Results in Andrews (2003) and Conley and Taber (2011) show that the SQ test
retains its good properties under a wide class of non-iid processes.
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hypothesis of a negative effect, at level α, if t̂ is less than the α-quantile of

the standard normal distribution, zα .

In conventional settings, this procedure “works,” in the sense of having

either finite-sample or asymptotic Type I error rate equal to α, for one of

two reasons. First, if as is normally distributed, then it can be shown that

γ̂ is normal as well. In this case, t̂ has a Student’s t distribution with n − 2

degrees of freedom under the null hypothesis that γ = 0.

Second, if γ̂ is not exactly normal, but
√

n(γ̂ − γ ) has an asymptoti-

cally normal distribution, then the distribution of t̂ under H0 is well approx-

imated by the standard normal distribution when n is reasonably large. In

such cases, it is common and generally appropriate to treat t̂ as if it were

standard normal. The statistical argument for this result requires the appli-

cability of a central limit theorem (CLT) to the behavior of the parameter γ̂ .

CLT results typically hold in econometrics applications because a statistic

can be written as a sample mean of a large number of observations, since

sample means are asymptotically normal under extremely broad conditions.

But when there is only one event date, or if separate effects are estimated

for each of a set of multiple events, then γ̂ cannot be written as a sam-

ple mean of many observations. Instead, under the usual assumptions, the

asymptotic distribution of (γ̂ − γ ) is the same as the distribution of ae, the

true event-date excess return. Thus, when the null hypothesis of zero event

effect is true, so γ = 0, and the number of pre-event observations is large,

γ̂ is approximately distributed according to the distribution F . Because the

proof of this fact is detailed and depends entirely on well-known facts, we

relegate it to Appendix A.3.

The fact that γ̂ − γ has asymptotic distribution F means that when we

have a large number of pre-event observations, Pr(γ̂ � y) is approximately

equal to F(y − γ ). When the null hypothesis is true, γ is zero, and thus

the event effect estimated using least-squares estimation of (3) behaves just

like a random draw from the firm’s excess returns distribution F , given

large n.

Next, consider the t-statistic. Because σ̂γ is consistent for σγ , the asymp-

totic distribution of the conventional t-statistic is the same as the distribution

of (ae + γ )/σa . Thus, for large n, the t statistic will behave like a scaled

and location-shifted random draw from the distribution of standardized

excess returns. For any w in the support of this scaled-shifted distribution,
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we thus have

lim
n→∞ Pr(t̂ � w) = Pr

(
ae + γ

σa
� w

)

= Pr

(
ae

σa
� w − γ

σa

)

= F(σaw − γ ). (4)

This result means that the t-statistic inherits its large-sample distri-

butional properties from the distribution of a single random draw from

the excess returns distribution. Notably, the large-sample behavior of the

t-statistic generally will be normal if and only if the excess returns distri-

bution F is itself normal. Thus, the standard approach has asymptotically

correct Type I error rate only in the special case of normally distributed

excess returns.

In Appendix A, we test two null hypotheses concerning the distributions

of firm-specific excess returns in our data. We first test and easily reject

the null hypothesis that all 3,050 firms’ excess returns come from the same

normal distribution. We then test whether each firm’s excess returns come

from a normal distribution, with the variances allowed to differ across firms.

Again we reject easily; few firms’ distributions are consistent with normal-

ity. These results imply that the standard approach will yield erroneous Type

I error rates for at least some, and possibly all, firms. The direction and mag-

nitude of these size errors can be estimated consistently using the sample

quantiles we discuss in Section 5, though these errors would be unknown

using only the results provided via the standard approach.

What can be said, as an analytical matter, about the standard approach’s

Type I error rate in the general case of nonnormal excess returns? Under

the null hypothesis, γ = 0, so as n grows, we have that Pr(t̂ � zα) con-

verges to F(σazα). Define the α-quantile of the true excess returns dis-

tribution as yα , so that by construction, Pr(as � yα) = F(yα) = α. When

yα < σazα , a lower-tailed test using the standard approach will reject more

than 100 × α% of the time, even with large n. When the opposite holds,

the standard approach will reject less than that percentage. Only when yα

happens to equal σazα will the standard approach reject at the desired Type

I error rate α.
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Figure 1. Illustrating Over- and Under-Rejection With Nonnormality.

For concreteness, Figure 1 illustrates the two possible cases when yα 
=
σazα . In the top panel, we illustrate the case yα < σazα , plotting the den-

sity from a standard normal distribution together with the density from a

Student’s-t distribution with three degrees of freedom. The standard nor-

mal’s 0.05-quantile is −1.645, while the t (3) distribution’s 0.05-quantile

is −2.35. Thus, if excess returns follow a t (3) distribution but one uses

the −1.645 critical value for t̂ , one will reject the null hypothesis of no

event effect greater than five percent of the time. In this case, the standard

approach will over-reject. This situation is good for plaintiffs and bad for
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defendants, since it would lead fact finders to erroneously accept the plain-

tiffs’ position more often than the intended standard.

In the figure’s bottom panel, we illustrate the case when yα > σazα . We

again plot the density from the standard normal distribution and then add

the density of standardized fitted excess returns that we estimated for one of

the firms in our sample, using Stata’s kdensity command. To construct this

density estimate, we first calculated âs for all 882 dates s for which we have

data for this firm. We then constructed the standardized fitted excess return

for generic date s ûs = âs/σ̂a , where σ̂a is the sample standard deviation

of âs . We will refer to the distribution of the corresponding standardized

residual us ≡ as/σa as G. Thus, by construction we have G(w) = Pr(us �
w) = Pr(as � σaw) = F(σaw); equivalently, F(y) = G(y/σa). If the firm’s

true excess returns came from a normal distribution, then the quantiles of G

would be the standard-normal quantiles, and ûs would follow a Student’s-t

distribution with degrees of freedom equal to the number of observations

minus one. Given the large number of observations we have on the firm

in the picture, the standard normal 0.05-quantile would be a good approx-

imation to the true 0.05-quantile of {ûs} under normality of F . However,

our estimated sample-0.05 quantile was −1.027, much closer to the origin

than the standard normal distribution value of −1.645. As the figure shows,

using the standard normal critical value of −1.645 would yield a Type I error

rate considerably below 0.05 for this firm.17

Below, we provide evidence that in the CRSP data for 2000–2007, such

systematic under-rejection is important. Such a result is beneficial in one

sense, since reducing Type I errors is generally a good thing. However, it

comes at a cost. As we show in Section 6.2, fact finders using the standard

approach with a firm like the one in the bottom panel of Figure 1 would

very infrequently accept plaintiffs’ position even when it is correct. That is,

for a firm like this one, the Type II error rate will tend to be very high, so

that power is low.18

17. We emphasize that we chose the firm in this picture precisely because its sam-
ple 0.05-quantile is especially close to the origin, allowing easy visualization of the source
of under-rejection when using the standard approach. Among the firms in our sample,
99% had a sample 0.05-quantile of standardized fitted excess returns to the left of this
firm’s value of −1.027.

18. The optimal tradeoff between size and power from the point of view of secu-
rities law is an interesting question, though one that lies beyond the scope of this paper.
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As a first pass at quantifying the importance of nonnormality in evalu-

ating the standard approach’s Type I error rate, we can estimate the asymp-

totic Type I error rate of the standard approach, under the assumption that all

3,050 securities’ returns come from the same distribution (i.e., F j = F for

every j = 1, 2, . . . , 3050). Under this null hypothesis, the empirical distri-

bution function of our pooled sample of excess returns, F̂pooled, is consistent

for F . As above, the standard approach’s true asymptotic Type I error rate

for a level-α test against the lower-tailed alternative is F(σazα). The sample

standard deviation of our excess returns sample is 0.040, so for α = 0.05,

our estimate of σazα is 0.040 × −1.64 = −0.066. The asymptotic Type 1

error rate for a level-0.05 test based on the standard approach is consistently

estimated by F̂pooled(−0.066) (i.e., the fraction of estimated standardized

fitted excess returns that are less than −0.066). Of the 4,696,254 excess

returns in our pooled sample, 145,836 are less than or equal to −0.066. Our

estimate of the Type I error rate based on a desired level-0.05 test using

the standard approach on pooled data is thus 145836/4696254 = 0.031.

In other words, given the assumption of a common excess returns distri-

bution, with data pooled across firms, the standard approach rejects only

about 60% as often as the desired level of 0.05. Similar calculations show

actual rejection rates of 0.022 and 0.049 for desired significance levels

α = 0.025 and 0.10.

The size distortions for α = 0.05 and 0.10 raise serious concerns for

the standard approach. However, we arrived at them only after impos-

ing the assumption that all 3,050 of the securities in our sample have

the same underlying distribution of excess returns (i.e., F j = F for all

j = 1, 2, . . . , 3050). We show in Appendix A that formal testing clearly

rejects this assumption. We also show that evidence rejects the null hypoth-

esis that all firm-specific excess returns distributions are normal. Thus, we

now provide evidence allowing for variation across firms in their excess

returns distributions.

4.3. Estimated Type I Error Rates Using the Standard Approach

As above, we will work with the standardized fitted excess returns,

defined as û j
s = â j

s /σ̂ j
a . Let G j be the true distribution of standardized

excess returns for firm j . If we write the α quantile of this distribution as
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wα , then by definition of quantiles we have G j (wα) = α. Because the stan-

dard approach rejects whenever the t-statistic is less than zα , it has true Type

I error rate G j (zα). In general, G j (zα) = α only if G j is normal, which is

easy to reject for nearly all firms in our sample.19

We can estimate the firm-specific error rate directly using our sample

data. Denote the empirical distribution function associated with our sample

of n j standardized fitted excess returns for firm j as Ĝ j
n j

(w). This function

tells us the fraction of standardized fitted excess returns observations in

our sample whose value does not exceed the level w (i.e., the sample Type

I error rate using the standard approach). For clarity, we use the notation

α̂ j
sa(α) ≡ Ĝ j

n j
(zα) to refer to the observed error rate for security j , using the

standard approach, when the desired error rate is α.

To estimate the asymptotic Type I error rate of the standard approach

for each firm given α = 0.05, we thus use α̂ j
sa(0.05) = Ĝ j

n j
(−1.645), which

is just the fraction of firm j’s standardized fitted excess returns that are

more negative than −1.645. The analytical discussion above suggests that

the estimated Type I error rate for the standard approach should be higher for

values of y j
0.05 that are further to the left of the origin (i.e., very negative);

lower for values of y j
0.05 closer to the origin; and should generally fall as

y j
0.05 increases toward the origin.

In Figure 2, we plot the estimated asymptotic Type I error rates at three

desired significance levels, α ∈ {0.025, 0.05, 0.10}; these significance lev-

els are indicated by horizontal lines. We indicate the standard normal distri-

bution quantiles corresponding to these levels using vertical lines at −1.960,

−1.645, and −1.282. The lighter, jagged lines plot the estimated asymptotic

Type I error rate for the standard approach at each α (i.e., α̂ j
sa(α)), the share

of each firm’s standardized fitted excess returns that fall below the standard

normal distribution’s α-quantile. The darker lines plot smoothed, nonpara-

metric (lowess) estimates of the average rejection rate at each value of the

firm-specific sample α-quantile, which is given by the horizontal axis.

We note that for all three choices of α, we have included data on only

those firms whose ŵ
j
0.05 lies in the middle 98% of the cross-firm distribution

of ŵ j
α; this sample restriction avoids visual noise related to extreme outliers.

19. It is of course possible that two different distributions will have some α-
quantiles in common, but unless the distributions are the same, that will happen only
by accident in practice and is not predictable a priori.
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Figure 2. Asymptotic Type I Error Rates for the Standard Approach at Levels α ∈
{0.025, 0.05, 0.10}.

The left-most jagged series plots the estimated asymptotic Type I error rate

for the standard approach at desired significance level α = 0.025, with the

middle and right-most series plotting the estimated asymptotic Type I error

rates for α = 0.05 and 0.10.

The average value of α̂ j
sa(0.025) across our 3,050 firms is 0.0248,

essentially equal to the desired level of 0.025. Based on this result, most

researchers would conclude that the standard approach performs well for

α = 0.025. However, there is heterogeneity across firms’ quantiles (as

expected given our results in Appendix A). Roughly half of firms (1,520 of

3,050) in our sample have ŵ
j
0.025 < −1.96, so that their estimated asymp-

totic Type I error rate exceeds 0.025, with the other half having estimated

asymptotic Type I error rates below α = 0.025.

Turning to α = 0.05, the average value of α̂ j
sa(0.025) across our 3,050

firms is 0.038, which is a nontrivial average size distortion. Only 4.7% of

firms (144 of 3,050) have sample 0.05-quantile to the left of −1.64. Thus,

the standard approach would under-reject a true null of zero effect for the

vast majority of firms.

Finally, we consider α = 0.10. The average value of α̂ j
sa(0.10) across our

3,050 firms is only 0.065. In addition, only four of our 3,050 firms have

a sample 0.10-quantile below z0.10 = −1.28. This explains why the entire
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upper series lies to the right of the vertical line at −1.28, since we have

graphed the rejection rate for only the middle 98% of firms as measured

by firm-specific sample 0.10-quantile. As a consequence, every firm rep-

resented in the graph has an estimated asymptotic Type I error rate below

the desired level of 0.10.

In sum, the evidence shows that the standard approach leads to sub-

stantial under-rejection for levels 0.05 and 0.10, with actual size below its

desired level for the vast majority of firms. For level 0.025, the standard

approach leads to correct size when averaging across firms, but the actual

firm-specific Type I error rate can differ substantially from the desired level

at α = 0.025. An important feature of Figure 2 concerns the negative slopes

of the smoothed estimated asymptotic Type I error rates. As we noted above,

the graph of rejection rates against ŵ j
α for a procedure with correct size

would be a horizontal line at α, up to sampling error. Not only do all three

collections of error-rate lines primarily lie below their desired α values, the

error rates clearly fall as firms’ sample α-quantiles rise toward zero.

5. The SQ Test

In this section, we explain the SQ test. We then turn to Monte Carlo and

other empirical evidence to assess the SQ test’s performance in typically

sized samples.

5.1. Deriving and Characterizing the Test

In Section 4, we explained why the estimated coefficient on the event

dummy, γ̂ , converges in probability to γ + ae.20 As a consequence, γ̂ − γ

has the same asymptotic distribution, F , as the event-date excess return, ae.

Equation (4) thus shows that under the null hypothesis of no event effect,

limn→∞ Pr(γ̂ � y) = F(y) = Pr(ae � y). The SQ test is based on this sim-

ple but powerful fact.

Suppose momentarily that we knew the value of the quantiles of F . That

is, for any α between 0 and 1, suppose we could determine yα that satisfies

Pr(ae � yα) = F(yα) = α. (5)

20. We drop the notation indexing firms for simplicity throughout this section.
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Since γ̂ ’s asymptotic null distribution is F , we could then use yα as a

critical value to test H0 at level α: we would reject the null against the

lower-tailed alternative whenever γ̂ � yα . The key challenge to asymp-

totically valid inference at level α is therefore to find a way to consis-

tently estimate the α-quantile of F . Under the assumptions commonly

made in event studies, this is a surprisingly simple task, requiring only

a trivial amount of additional work beyond that necessary for the stan-

dard approach. The following procedure characterizes the SQ test, which

achieves asymptotic Type I error rate equal to α in testing H0 against the

lower-tailed alternative Hl . Note that we define the procedure in terms of

nonstandardized fitted excess returns (i.e., âs) rather than ûs . Because stan-

dardizing does not change the order statistics of a sample, the procedure

involves identical steps and results when it is used with standardized fitted

excess returns.

PROCEDURE 1 (The SQ Test Against Hl : γl < 0) 1. Estimate β̂ and γ̂

using OLS estimation of the market model (3).

2. For each nonevent date s ∈ {1, 2, . . . , n}, calculate the fitted excess

return âs = rs − Xs β̂.

3. Sort âs from least to greatest. Let the i th order statistic be written

â(i), so that

â(1) � â(2) � · · · < â(n).

4. Next, define the ceiling operator �·� such that �x� returns the integer

c with the property that x < c � x + 1. Define c(α, n) = �α × n�,

and find the c(α, n) order statistic of {âs}; call this value ŷα , and note

that it is the sample α-quantile of the realized âs values. For exam-

ple, in the case of α = 0.05 and n = 100, we have c(0.05, 100) = 5,

so we find the 5th least (i.e., most negative) value of âs .

5. Reject H0 against Hl if and only if γ̂ < ŷα .

It can be shown that as the number of pre-event observations n grows, the

probability that Procedure 1 rejects H0 when it is true converges to α, which

confirms that the SQ test has asymptotically correct size. We refer readers

interested in a formal proof to Proposition 2 of Conley and Taber (2011)

or to our earlier paper, Gelbach et al. (2011). It will be helpful, though, to
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give a heuristic discussion of the result. Define the empirical distribution

function F̂ based on nonevent date data:

F̂(y) = 1

n

n∑
s=1

1(âs � y). (6)

The empirical distribution function, F̂ tells us the share of all fitted

excess returns that are no greater than some arbitrarily chosen y. Note that

F̂ involves sample, rather than “true”, information about excess returns

in two ways. First, F̂ is defined using observations on fitted, rather than

true, excess returns. Second, we have only a sample of n pre-event dates,

rather than the entire population of excess returns values. Thus, even if we

knew each as , we would not know the population distribution F , but rather

only the empirical distribution function using true, rather than fitted, excess

returns, defined as

Fn(y) = 1

n

n∑
s=1

1(as � y), (7)

To make these two sources of error more explicit, observe that we can

decompose the error we commit in using F̂(y) rather than F(y) as follows:

F̂(y) − F(y) = F̂(y) − Fn(y)︸ ︷︷ ︸
Error 1

+ Fn(y) − F(y)︸ ︷︷ ︸
Error 2

. (8)

Error 1 arises due to the fact that we use âs rather than as , given that

we have only a sample. This error vanishes as n grows, because âs and as

differ only according to whether X ′β̂ or X ′β is substracted from the firm’s

observed daily return, and since β̂
p→ β, this difference is irrelevant asymp-

totically. Error 2 arises because even if we could observe each day’s excess

return, we would have only a sample of n observations; thus, even then we

could observe only Fn rather than the population distribution F . As a con-

sequence of the Glivenko–Cantelli theorem, Error 2 also converges to zero

(e.g., see van der Vaart, 1998). Because convergence of a cumulative distri-

bution function and convergence of its associated quantiles are equivalent,

convergence of F̂(y) to F(y) under the null hypothesis is sufficient for each

sample quantile ŷα to converge to its corresponding population quantile yα .

It then follows that F̂(ŷα)
p→ F(yα) = α.
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This result implies that researchers can use the SQ test to fix the asymp-

totic Type I error rate of the test for a zero event effect at any chosen level.

The procedure thus provides the basis for asymptotically valid inference,

even though the procedure amounts to little more than sorting some fitted

values.21

5.2. Monte Carlo Evidence on the Small-Sample Size of the
SQ Test

Given that the SQ test has asymptotically correct size, a natural next

question concerns its small-sample behavior. It is always possible that an

asymptotically justified method requires enormous sample sizes in prac-

tice, and event studies typically involve large but not massive samples. We

thus present Monte Carlo evidence in this section for pre-event samples of

size n = 100.

We investigate the SQ test’s small-sample performance with significance

levels α = 0.025, 0.05, and 0.10, though for simplicity we explain the pro-

cedure only once, using α = 0.05. Our Monte Carlo experiment consists of

m = 1, 2, . . . , 1,000 repetitions of the following procedure:

1. For each firm j , we draw n + 1 = 101 values from the n j observed

values of (r j
s , Xs) in our data; we use random sampling with

21. An interesting potential extension to the analysis below would involve non-
linear generalizations of (3). An example would be to modify the main equation in (3)
to be H(ys , Xs , θ) = as for some outcome variable ys , regressors Xs , parameter vec-
tor θ , nonlinear function H , and residual as . If H is known and continuous, and if
θ can be consistently estimated, then by the continuous mapping theorem, âs − as =
H(ys , Xs , θ̂ ) − H(ys , Xs , θ) converges in probability to zero; therefore, the asymptotic
equivalence lemma (White, 2001, Lemma 4.7, p. 67) implies that for the event date, âe

and ae will have the same asymptotic distribution. We conjecture that in this situation,
the sample quantiles of the pre-event residuals will also be consistent. Thus, we believe
the SQ test should be valid for this class of nonlinear models (concerning this generalized
model, see also Dufour et al., 1994). Even if H is unknown, finite-dimensional θ often is
still consistently estimable via semi-parametric methods (see, e.g., Horowitz, 1998), so
as = H(ys , Xs , θ) should be consistently estimable under suitable regularity conditions;
thus the SQ test might sometimes be valid then, too. A final question is whether the SQ
test might be valid when θ is infinite-dimensional, so that the model is nonparametric.
We have not investigated this case, which would involve some technical issues, but we
would not be surprised if forms of the SQ test were appropriate in at least some such
cases.

 at U
niversity of Pennsylvania L

ibrary on January 17, 2014
http://aler.oxfordjournals.org/

D
ow

nloaded from
 

http://aler.oxfordjournals.org/
http://aler.oxfordjournals.org/


Valid Inference in Single-Firm, Single-Event Studies 521

replacement to make these draws. Observation s for firm j on

Monte Carlo repetition m is (r j
s,m, Xs,m), s ∈ {1, 2, . . . , n + 1},

where Xs,m = (1, rmkt,s,m). For all firms, we set the “event” dummy

Ds,m equal to 1 for s = n + 1 and 0 for 1 < s � n.

2. We estimate the model in (3). The fitted excess return for day s � n

in Monte Carlo iteration m is â j
s,m = r j

s,m − X ′
s,m β̂ j,m , where β̂ j,m is

the OLS estimate of β for firm j on the mth Monte Carlo repeti-

tion. The corresponding estimated event effect can be calculated as

γ̂ j,m = r j
101,m − X101,m β̂ j,m (see Appendix A.3).

3. We calculate the sample 0.05-quantile, ŷ j,m
0.05, of the first n = 100

realizations of â j
s,m . This is the fifth order statistic of the fitted

residuals for the j th firm on the mth Monte Carlo repetition. For

Monte Carlo repetition m, we reject the null hypothesis against

a lower-tailed alternative based on the SQ approach if and only

if the estimated event effect is less than the sample quantile (i.e.,

γ̂ j,m < ŷ j,m
0.05). We set ρ j,m = 1 if we reject for firm j on Monte Carlo

iteration m, and we set ρ j,m = 0 if we do not reject.

For each security j , we then calculate the Monte Carlo rejection rate

(MCRR) over the 1,000 repetitions of this experiment (i.e., ρ̄ j = 1000−1∑1000
m=1 ρ j,m). If a test has correct size for a given j , then it should

exhibit a rejection rate of 0.05, up to Monte Carlo simulation error.

Using only 1,000 Monte Carlo repetitions may yield an imprecise rejec-

tion rate for any given j , so we use two approaches to dealing with

this imprecision.

First, we can investigate the grand mean Monte Carlo rejection rate when

we pool over all 3,050 firms (i.e., ρ̄ ≡ 3050−1
∑

j ρ̄ j ). For α ∈ {0.05, 0.10},
the Monte Carlo estimates of ρ̄ are 0.051 and 0.101, very close to the desired

levels; we discuss the case of α = 0.025 below. Based on these pooled-

across-firm results, 100 pre-event observations is a large enough value of

n for the SQ test to deliver an actual Type I error rate that is essentially

indistinguishable from α ∈ {0.05, 0.10} for practical purposes.

Second, we again use local smoothing techniques to exploit the large

number of securities in our sample, which averages out the simulation

error. Thus, we expect the graph of the MCRR to be horizontal at approx-

imately level α, up to simulation error. Figure 3 plots the lowess smooth-

ing of the results for desired significance levels α ∈ {0.025, 0.05, 0.10}. As
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Figure 3. Monte Carlo Size Results for the SQ Test, α ∈ {0.025, 0.05, 0.10}.

with Figure 2 for the standard approach, for reference we include dashed

horizontal lines at each desired significance level and vertical lines at the

corresponding standard-normal quantiles. We do not plot the underlying,

firm-specific Monte Carlo rejection rates.22

A first result displayed in Figure 3 is that the estimated Type I error rate

in firm-specific samples of size n = 100 does not vary with firm-specific

sample α-quantiles. Thus, the SQ test’s rejection probabilities appear to be

independent of the α-quantiles in firm-specific standardized fitted excess

returns distributions, both asymptotically and in typical sample sizes. This

finding is to be expected, given our theoretical discussion, and it is an

important improvement over the standard approach. A second key result in

Figure 3 is that the estimated Type I error rate is essentially indistinguish-

able from α for α ∈ {0.05, 0.10}.
For α = 0.025, Figure 3 suggests that the SQ test rejects more frequently

than the desired level. The raw mean rejection rate confirms this sugges-

tion: the SQ test’s average Monte Carlo rejection rate across firms is 0.0304

at desired level 0.025. Note, though, that in a sample of size n = 100,

22. Even with 1,000 Monte Carlo repetitions, it can be shown that the standard
deviation of a single-firm-specific rejection rate across simulations is roughly 0.01 when
using α = 0.10. Thus, plotting roughly 3,000 individual firms’ rejection rates yields a lot
of visual noise, so we plot only the lowess smoothing.
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the critical value used for the SQ test when α = 0.025 is the c(0.025,

100) = �2.5� order statistic. Since �2.5� = 3, the SQ test in a sample with

n = 100 uses the same critical value for a level-0.025 test as for a level-0.03

test. This property is not a defect of the test, but rather of the chosen sample

size, 100.

Given a desired significance level α, this example shows the importance

of choosing n so that α × n is an integer; when it is not, the SQ test’s small-

sample performance will yield upward distortions in actual size.23 To illus-

trate this point, we ran the same Monte Carlo procedure described above for

α = 0.025 and n ∈ {40, 80, 200}, with only 100 Monte Carlo repetitions in

each of these three cases. We chose these pre-event sample sizes because

each has the property that c(0.025, n) is integer-valued: c(0.025, 40) =
1, c(0.025, 80) = 2, and c(0.025, 200) = 5. The average Monte Carlo

rejection rate across firms was 0.0267 for n = 40, 0.0253 for n = 80,

and 0.0252 for n = 200, confirming that the SQ test works well when

c(α, n) is integer-valued.

6. Asymptotic Power of the SQ Test

We now investigate the asymptotic power properties of the SQ test. In

the litigation context, low-power tests have the property that they will fail

to reject the null of no event impact even when the true impact on firm value

is negative. Thus, power is important in the litigation context because it tells

us how often the plaintiffs win when some unlawful action has reduced the

value of the security in question. A common measure of a test’s power is

whether the test is unbiased. An unbiased test has power greater than its

size, so that the test rejects more frequently under the alternative than under

the null. Unbiasedness is a minimal power criterion: a test that rejects a false

null less often than a true one is obviously of limited use. We show below

analytically that (i) the SQ test is asymptotically unbiased, while (ii) the

23. An alternative approach in noninteger cases would be to interpolate between
c(α, n) and c(α, n) − 1 so as to smooth the rejection rate. This approach requires an
interpolation algorithm, which could be difficult to choose in practice, given that excess
returns exhibit nonnormality of unknown form. Since n is usually a choice variable, we
do not pursue this approach here.
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standard approach may be either asymptotically biased or unbiased, depend-

ing on the shape of the excess returns distribution F .24

In addition to proving the analytical results just discussed, in the rest of

this subsection we estimate the asymptotic power of the SQ test and the stan-

dard approach for each firm in our sample. We show below that in our data,

the standard approach has relatively poor power properties by comparison

to the SQ test.

6.1. Asymptotic Unbiasedness

Consider the SQ test’s power against the lower-tailed alternative, Hl :

γ < 0. This application would arise in testing whether a firm’s corrective

disclosure caused a reduction in its stock price, for example. Since the

true effect γ is a scalar constant, Pr(γ̂ � y) = Pr(γ̂ − γ � y − γ ). The SQ

test’s finite-sample rejection probability given γ and level α is Pr(γ̂ − γ �
ŷα − γ ). Since ŷα is consistent for yα , and since the asymptotic distri-

bution of γ̂ − γ is F , it follows that Pr(γ̂ − γ � ŷα − γ ) converges to

F(yα − γ ). Therefore, the SQ test’s asymptotic rejection probability against

a lower-tailed alternative is F(yα − γ ). Since γ < 0 when the alternative

hypothesis is true, and since F is strictly increasing given the assumption of

continuously distributed excess returns, we have F(yα − γ ) > F(yα) = α.

As a result, the SQ test’s asymptotic probability of rejecting the null against

a true lower-tailed alternative is greater than its asymptotic size, which

establishes unbiasedness.

Next we determine whether the standard approach is unbiased. Recall

that the standard approach rejects Hl if and only if γ̂ < σ̂azα , which is

asymptotically equivalent to the condition that γ̂ < σazα . As above, we work

with standardized excess returns, so the standard approach’s asymptotic

rejection rate given a true effect of γ is given by

lim
n→∞ Pr

(
γ̂

σ̂a
� zα

)
= Pr(ae � σazα − γ )

= F(σazα − γ ).

24. Another, more demanding, power criterion is test consistency. A consistent test
has asymptotic power equal to 1, rather than simply exceeding its size. Many commonly
used tests are consistent, e.g., it can be shown that a test of the null hypothesis that a firm’s
beta is 0 is consistent. Neither the SQ test nor the standard approach can be consistent,
even under normality of F , since the number of event dates equals 1 regardless of n. Test
consistency is simply not possible with a fixed number of events.
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This probability exceeds α only when F(σazα − γ ) > F(yα), which is vio-

lated when yα > σazα − γ . The standard approach may yield either asymp-

totically biased or unbiased tests, depending on the magnitude of the event

effect and the discrepancy between yα and its counterpart under normality,

σazα . Biased tests will result for more firms when there are smaller true

effects (i.e., γ closer to zero), and less dispersion of the excess returns dis-

tribution relative to normality.

To compare power for the two tests, consider first the case when the stan-

dard approach has correct asymptotic size, so that yα = σazα . In this case,

the standard approach’s asymptotic rejection rate for given γ is F(yα − γ ),

exactly equal to the SQ test’s asymptotic power. Thus, when the standard

approach provides correct asymptotic size, the two tests have equal asymp-

totic power.

As we showed above, the standard approach does not generally have cor-

rect size, so the fact that the two tests have equal size-corrected power is

primarily of theoretical interest. As an empirical matter, what matters is

whether the size distortions we documented above bring along especially

low or high power. This point is especially relevant in the context of lit-

igation and policy decisions. In each of these cases, the financial conse-

quences of inferential outcomes are potentially very large. Thus, we will

use our CRSP data to compare the estimated asymptotic rejection rate of

the uncorrected standard approach with the SQ test’s estimated asymptotic

rejection rate.

6.2. Empirical Estimates of Asymptotic Power

The SQ test’s asymptotic power for security j is F(y j
α + σa) when the

event effect is a one standard deviation reduction in value (γ = −σa), and

F(y j
α + σa/2) when the event effect is a one-half standard deviation reduc-

tion (γ = −σa/2). Equivalently, the SQ test’s asymptotic power in the two

cases is G(w j
α + 1) and G(w j

α + 1
2 ), since the quantiles of F and G are

related by the identity y j
α/σa = w j

α . Letting Ĝ j
n j

be the empirical distribu-

tion function of standardized fitted excess returns for security j based on

all n j available observations, we estimate the relevant probabilities using

Ĝ j
n j

(ŵ j
α,n j

+ 1) and Ĝ j
n j

(ŵ j
α,n j

+ 0.5). That is, we calculate the share of

firm j’s standardized fitted excess returns that are less than ŵ j
α,n j

+ 1

for a one standard deviation reduction, and the share that are less than
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Table 2. Asymptotic Power Under Normality and Empirical Excess Returns
Distributions

Value of α

0.025 0.05 0.10

γ = −0.5
Theoretical, under normality of F 0.072 0.126 0.217
Empirical, standard approach 0.053 0.087 0.140
Empirical, SQ Test 0.056 0.111 0.228

γ = −1
Theoretical, under normality of F 0.169 0.260 0.389
Empirical, standard approach 0.110 0.175 0.320
Empirical, SQ Test 0.117 0.249 0.500

ŵ j
α,n j

+ 0.5 for a one-half standard deviation reduction. The results dis-

cussed above ensure that these probabilities are consistent for G(w j
α + 1)

and G(w j
α + 0.5) as n j grows. Note that this evidence involves actual sam-

ple information only, rather than a Monte Carlo experiment.

As a basis for comparison, suppose we knew that F were normal, so that

standardized excess returns had a standard normal distribution. In this case,

we could compute the asymptotic power of the standard approach analyti-

cally at each choice of α, since then Pr(Reject | γ, σa, α) = Pr(γ̂ /σa � zα),

which converges to �(zα − γ /σa), where � is the standard normal cumu-

lative distribution function. Note that since the SQ test is asymptotically

identical to the standard approach when F is normal, this is also the asymp-

totic power for each test under normality of F . (We stress that since excess

returns distributions are clearly nonnormal, the only point of using the nor-

mality comparison is to fix a baseline level of power that could be consid-

ered reasonably attainable.)

Table 2 reports asymptotic power for each choice of α and γ under nor-

mality of F . It also reports the cross-firm average estimated asymptotic

power for the standard approach and for the SQ test. The table shows that

the standard approach’s power given the empirical excess returns distribu-

tions is about 70% of the power that would be achieved under normality in

all but one case (when γ = −1 and α = 0.10, in which case the standard

approach’s power is still less than would be achieved under normality). The

SQ test’s power exceeds the standard approach’s power in all six cases, and
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substantially so in several of them. Table 2 shows that the SQ test has good

asymptotic power even in highly nonnormal data.

Figure 4 graphs firm-specific estimated asymptotic power against firm-

specific sample α-quantiles. The top graphs involve γ = −0.5, while the

bottom ones involve γ = −1. The graphs on the left-hand side are for the

standard approach, while those on the right-hand side are for the SQ test.

In each graph, we consider α ∈ {0.025, 0.05, 0.10}. As in the size figures

above, we plot the rejection rate on the vertical axis and the firm-specific

sample α-quantile, ŷ j
0.05,n j

, on the horizontal axis. Dashed horizontal lines

represent the average rejection rate for each choice of α (these averages

are the power figures from Table 2). We also continue to restrict attention

to the middle 98% of firms as measured by sample α-quantile values. As

above, the jagged, lighter series are firm-specific rejection rates, while the

smoother series are lowess estimates of the rejection rate given the firm-

specific sample α-quantile.

The results in Figure 4 illustrate two important facts in addition to those

demonstrated in Table 2. First, holding constant the significance level α

and the true effect size γ , the standard approach’s power falls as the firm-

specific α-quantile rises toward zero. Second, the opposite is true for the

SQ test: power increases as the firm-specific α-quantile rises toward zero,

holding constant α and γ .25

6.3. Summary of Empirical Power Results

We can summarize our empirical power results with two points. First,

the SQ test has substantial power, especially against an effect size as large

25. There is a simple way to explain this combination of results. Since we are
working with standardized fitted excess returns, the distribution’s shape becomes more
compressed as the 0.05-quantile ŵ

j
0.05,n j

rises toward zero. As a general matter, then, a

value of ŵ
j
0.05,n j

closer to zero implies a greater mass between ŵ
j
0.05,n j

and ŵ
j
0.05,n j

+ δ

for any positive δ. This means that a fixed δ = −γ will tend to move us further into the
distribution when a security has a value of ŵ

j
0.05,n j

that is closer to zero. The result is a

greater asymptotic rejection rate for the SQ test as we move to the right in the figures
above. By contrast, zα does not increase as ŵ

j
0.05,n j

does: the standard approach uses the

same critical value for all securities, regardless of the quantiles of their excess returns
distributions. Therefore, its asymptotic rejection rate falls as ŵ

j
0.05,n j

moves closer to

zero. Thus the pattern shown in the graphs on the left side of Figure 4 is precisely what
we should expect to see.
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Figure 4. Asymptotic Power for the Standard Approach and the SQ Test, γ ∈ {−0.5, −1}, α ∈ {0.025, 0.05, 0.10}.
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as one standard deviation in magnitude. Second, the standard approach’s

asymptotic power is considerably lower than the SQ test’s power for much

of the range of the data. Substantively, our results for the standard approach

using data from 2000–2007 suggest the presence of a potentially severe bias

against finding an event effect, especially for α = 0.05 or 0.10. Among other

things, this suggests the potential for considerable anti-plaintiff bias in the

context of securities litigation.

7. Extensions to Accommodate Multiple Firms and
Multiple Events

In this section, we extend the above results to accomodate multiple firms

and multiple events.

7.1. Multiple Firms

One interesting extension involves the possibility of dealing with mul-

tiple firms experiencing an event on a single day. An interesting example

is the effects on Microsoft’s competitors of the June 7, 2000, order break-

ing up the company.26 An additional, and litigation-relevant, example could

involve a firm that is sued by multiple competitors that all allege anti-

competitive acts on a given day.

The SQ approach can be extended to the multiple-firm case by specify-

ing the basic returns model (3) for each of m > 1 firms. As before, D j
s is a

dummy variable that equals 1 on the event date and 0 on all other dates. The

parameter γ j is firm j’s event effect. To implement the SQ approach, one

estimates the m firm-specific equations, yielding γ̂ = (γ̂ 1, γ̂ 2, . . . , γ̂ m),

the vector of the m firm-specific estimated event effects. Under the null

hypothesis that all event effects are 0, the element of γ̂ corresponding to

firm j will have asymptotic marginal distribution F j , the same as the firm’s

distribution of excess returns on nonevent dates.

Working with the vector γ̂ , or functions of it, requires that we derive

its asymptotic distribution. Let as = (a1
s , a2

s , . . . , am
s ) be a random draw

from the joint distribution of firms’ excess returns. If firms’ excess returns

26. See Bittlingmayer and Hazlett (2000) for more on Microsoft, antitrust enforce-
ment, and event studies.
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are mutually independent on any date s, then the asymptotic distribution

of γ̂ satisfies F0a =×m
j=1 F j , (i.e., the joint distribution is the product of

marginals). When there is within-day, cross-firm dependence, this relation-

ship does not hold, and we simply define the joint distribution of as as F0a . In

either case, it remains true that γ̂
p→ γ + ae. Therefore, γ̂ − γ has asymp-

totic distribution equal to the asymptotic distribution of the vector ae, which

is simply F0a . Testing joint hypotheses involving multiple firms is thus a

straightforward generalization of the single-firm case.

For example, let ϕ be some real-valued function of the vector of firm-

specific excess returns that is bounded and continuous with probabil-

ity 1. Under the null hypothesis that the event has zero effect on all m

firms, the asymptotic distribution of ϕ(γ̂ ) is the distribution of ϕ(as).

This latter distribution can be estimated consistently using F̂0ϕ(y) = (n +
1)−1

∑n
s=1 1(ϕ(âs) � y), where âs is the vector of m fitted excess returns

(standardized or not) for any nonevent date. Our single-firm results on

asymptotic size generalize easily to this case, though power properties must

be established on a case-by-case basis.27,28

27. It is easy to establish that the generalized SQ test is unbiased whenever ϕ(a) =
G(c′a), where each element c j of c = (c1, . . . , cm)′ is positive and G is continuous
and strictly increasing. To see why, observe that the inter-day independence assumption

implies Pr(ϕ(ae) � y) = Pr(ϕ(as) � y) = F0ϕ(y) for all s = 1, 2, . . . , n. Since γ̂ − γ
p→

ae, it follows that Pr(ϕ(γ̂ ) � y) = Pr(c′γ̂ � y) = Pr(c′(γ̂ − γ ) � y − c′γ ), which con-
verges to F0ϕ(y − c′γ ). Let yα be the α-quantile of the distribution of ϕ(as), so that
F0ϕ(yα) = α. Since all elements of c are strictly positive, and since the lower-tailed alter-
native is Hl : γ j < 0 for all j , under Hl we have c′γ < 0, and thus yα − c′γ > yα . It
then follows from the fact that F0ϕ is strictly increasing that under Hl , F0ϕ(yα − c′γ ) >

F0ϕ(yα) = α, which establishes that the test’s power is greater than its significance level,
establishing unbiasedness. An obvious choice for the j th element of the column vector
c is to use c j = σ−1

aj , the inverse standard deviation of excess returns for the j th security.
This standard deviation is unknown, but it can be estimated from the pre-event excess
returns. Using this choice of c has the effect of equalizing the scale of c j γ̂

j across j , so
that no subset of securities dominates the test statistic’s distribution. Note that this test
would perform less well for Hl : γ j < 0 for some, rather than all, j , since firms with
negative effects could be masked by firms with positive effects, which is allowed under
this choice of Hl .

28. One choice for ϕ would be ϕ(a) = a′�̂−1a, where �̂ is a consistent estimate
of �, the m × m variance matrix of as . This typical choice of ϕ would be appropriate only
for two-sided alternatives, since it leads to tests that reject whenever γ̂ j is too far from
zero in either direction, for some j . Moreover, this choice of ϕ for the SQ approach may
not yield an unbiased test unless each as has a multivariate normal distribution. Under
the null, this test has the same asymptotic power as the standard approach of using χ2

m
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7.2. Multiple Events

The case of multiple events is also easy to address. For simplicity, we

assume there is only one firm, since the previous section shows that it is

easy to accommodate more than one firm, and this way we can drop the firm

superscript for clarity. With m event dates, the model is now rs = Xsβ +∑m
j=1 D j

s γ j + as , where D j
s is a date j-specific dummy variable and γ j is

the effect of the date- j event.

We focus here on the case in which m = 2, so that there are two event

dates.29 This case is of particular interest in the litigation context given some

readings of Justice Breyer’s opinion in Dura, that both the date of the initial

fraudulent act and the date of the corrective disclosure may require event

analysis in future fraud-on-the-market cases.30

Under the null hypothesis, γ 1 = γ 2 = 0. An alternative hypothesis rel-

evant for a case like Dura might involve γ 1 > 0 > γ 2: on the date of the

fraudulent act, the stock rises an unusally large amount, later to fall an

unusually large amount on the date of the corrective disclosure. The argu-

ments above establish that (γ̂ 1 − γ 1) − ae1

p→ 0 and (γ̂ 2 − γ 2) − ae2

p→ 0,

where ae j is the excess return on the j th event date. Under H0, γ j = 0, so

γ̂ j − ae j

p→ 0. It then follows, as before, that the asymptotic null distribu-

tion of γ̂ j is F(y) = Pr(as � y).

critical values, which are unbiased under normality. However, we have not so far been able
to establish that this choice of ϕ yields an unbiased test when normality does not hold.
(The usual power results derived in standard textbooks lean heavily on the normality
of γ̂ under the alternative. Without normality, the quadratic form version of ϕ is not
generally distributed χ2. Since E[ae] = 0, it is easy to show that E[γ̂ ′�−1γ̂ ] converges
in probability to a′

e�
−1ae + γ ′�−1γ , but this fact alone is insufficient to generate an

analytical result on power without normality of ae.) Moreover, the resulting quadratic-
form test is sensitive to all departures of |γ j | from 0, including those in the direction
opposite to a one-tailed alternative of interest. This is an undesirable feature in testing
against a one-sided alternative. For example, it could lead us to reject the null when a
firm experiences a positive, rather than negative, event effect on the date of a corrective
disclosure.

29. It is straightforward to generalize to more dates. We consider only the two-
date case both for brevity and because of the obvious application to securities litigation
explained here.

30. For example, this is the reading favored by Dunbar and Mayer (2006), whose
analysis would generally require an event study assessing the effects of both the initial
alleged mis-statement and the subsequent corrective disclosure.
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As noted above, it is common in event studies, especially those used in

litigation, to assume conditional independence of returns across days. Under

this assumption, the asymptotic joint distribution of (γ̂ 1, γ̂ 2) is simply the

product of marginals, F(y1)F(y2). We can use this fact to construct a level-

α test of the null γ 1 = γ 2 = 0 against the alternative that γ 1 > 0 > γ 2 as

follows. Let yδ1 and yδ2 be the δ1- and δ2-quantiles that satisfy F(yδ1) = δ1

and F(yδ2) = δ2. Since γ̂ 1 and γ̂ 2 are asymptotically independent, it follows

that

lim
n→∞ Pr(γ̂ 1 > yδ1 and γ̂ 2 < yδ2) = [1 − F(yδ1)]F(yδ2) (9)

= (1 − δ1)δ2. (10)

For a level-α test, we choose δ1 and δ2 so that α = (1 − δ1)δ2. A natural

requirement is that in testing the joint null, we hold the two event effects

to the same probabilistic standard, in which case 1 − δ1 = δ2 = δ. Thus,

δ = √
α. So, for a level-α test, define ŷ√

α and ŷ1−√
α as the sample

√
α- and

(1 − √
α)-quantiles of the distribution of fitted excess returns. The rejec-

tion rule for the SQ test is simple: reject the null that both event effects

are 0 against the alternative hypothesis, of a positive date-1 and a nega-

tive date-2 effect, if and only if both γ̂ 1 > ŷ1−√
α and γ̂ 2 < ŷ√

α . This makes

intuitive sense: we reject the joint null whenever the two event dates’ esti-

mated effects are simultaneously far from the origin in the directions that

the alternative hypothesis specifies.

It is interesting to note that this result is very different from the naive

approach of conducting two separate level-α tests, one for each of γ̂ 1 and

γ̂ 2. To illustrate, suppose that F were actually normal, with standard devi-

ation σa . In that case, the critical values for a level-α test would be 0.76σa

for γ̂ 1 and −0.76σa for γ̂ 2: any time γ̂ 1 > 0.76 and γ̂ 2 < −0.76 both occur,

we would reject the null at level 0.05. By contrast, the naive approach

would reject only if γ̂ 1 > 1.64σa and γ̂ 2 < −1.64σa . Given that F is nor-

mal, the probability of this joint event is only 0.052 = 0.0025. Thus, the

naive approach would radically under-reject the null. Requiring such a test

is tantamount to changing the rules of the litigation game against plaintiffs.

Justice Breyer’s opinion in Dura says nothing of changing the standard (i.e.,

the significance level), needed for proof. Rather, it concerns the facts that

must be established for any given standard of proof. We believe it would be
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mistaken to implicitly read a new, much more stringent, standard of proof

into a decision that is entirely silent on the point.

Finally, we note that exactly the opposite issue arises if the alternative

hypothesis is that only one of the two event-date excess returns is nonzero.

In this case, we must choose critical values that account for the fact that

we get two draws from F under the null. The typical approach in the statis-

tics literature is to use the Bonferonni correction for multiple draws, which

involves using test-specific significance levels δ = α/2, or 0.025 in the

level-0.05 case.31

8. Conclusion

In this paper, we have demonstrated the advantages of using the SQ test in

single-firm, single-event studies. The SQ test’s asymptotic Type I error rate

always equals the analyst’s desired significance level, and our Monte Carlo

results suggest that the same holds with real-world sample sizes of pre-event

observations. In addition, the test has considerable asymptotic power for

empirically relevant excess returns distributions, and it gives up no power

to the standard approach when the standard approach is valid.

An additional contribution of this paper has been to document the sys-

tematic and substantial errors of inference likely to result from inappropriate

use of the standard approach to single-firm, single-event studies. The fact of

nonnormality of excess returns distributions, and the basic problems asso-

ciated with it for event studies have been known and discussed elsewhere.

To our knowledge, though, ours is the first study to document the extent of

this problem for event studies using a broad cross-section of firm-level data.

Moreover, we believe our findings that (i) the standard approach’s asymp-

totic Type I error rates are frequently biased downward as an empirical mat-

ter, and (ii) that its power is correspondingly low, are new. In the context of

31. Because they ignore the possibility that both date-specific test statistics might
cause the test to reject, Bonferonni corrections are slightly conservative. The exact value
for δ is 0.0253 in the case m = 2. In general, this will make little difference asymptotically,
though with relatively small n, it could matter slightly in practice. For instance, if n = 120,
then 0.025n = 2.975, so we would use the third order statistic of F̂ as our estimated
critical value, while 0.0253n = 3.0107, so we would use the fourth order statistic.
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securities fraud litigation that helps motivate this paper, our evidence sug-

gests that over the period 2000–2007, use of the standard approach might

have led to substantial anti-plaintiff bias in some cases.

Appendix A. Empirical Evidence on Firm-Specific Excess
Returns Distributions

A.1. Is the Distribution of Pooled Excess Returns Normal?

We first consider whether the pooled sample of excess returns can plau-

sibly be normal. A simple test of normality is the Jarque–Bera test based on

two properties that hold for all normal distributions: they are symmetric, so

that they have skewness equal to zero, and they have kurtosis equal to 3.32

The pooled distribution of excess returns in our sample has sample skew-

ness equal to −0.11 and sample kurtosis equal to 94.4. The Jarque–Bera test

statistic, JB,33 is based on the sample skewness and kurtosis values and is

distributed χ2 with two degrees of freedom under normality, with a level-

0.05 critical value of 5.99. The sample skewness and kurtosis values just

listed yield a JB value of greater than 1.6 billion, so we can reject the null

hypothesis that the pooled distribution of excess returns is normal.

A.2. Do All Securities’ Excess Returns Come from
the Same Distribution?

Our next test concerns whether firms’ excess returns come from the

same (nonnormal) distribution. Given the strength of the null hypothesis,

that all 3,050 distributions are the same, one could devise a variety of tests.

We focus on two tests that concern the behavior of the security-specific

sample 0.05-quantiles, which we call ŷ j
0.05,n j

. We choose this statistic as the

basis of our tests because variation in the true α-quantiles guarantees incor-

rect size for some securities, as discussed above.

32. A distribution’s skewness is the ratio of its third central moment to the cube of
its standard deviation. A distribution’s kurtosis is the ratio of its fourth central moment
to the fourth power of its standard deviation.

33. The JB statistic for distribution j equals (n j /6)(sk2
j + (1/4)(κ j − 3)2), where

n j is the sample size, sk j is the sample skewness, and κ j is the sample kurtosis.
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It is of course possible that sample variation in key firm-specific sample

α-quantiles is driven by random noise. To see how such a situation could

occur, imagine that all securities’ excess returns came from the same under-

lying distribution, F . Given that we have data on 3,050 securities in our

sample, we will wind up with 3,050 values of ŷ j
0.05,n j

in any random sample

drawn from this distribution. With so many draws, some of the security-

specific sample 0.05-quantiles may appear to lie relatively far from the true

population 0.05-quantile. That is, even if all securities have the same true

sample 0.05-quantile y0.05, there will be some set of firms whose realized

sample quantiles are quite far from y0.05. Thus, one needs a metric to eval-

uate whether the variation in sample 0.05-quantiles exceeds the variation

to be expected under the null hypothesis of homogeneous excess returns

distributions. We offer two approaches.

Our first approach is based on a permutation exercise. Under the null

hypothesis that all firms’ excess-returns distributions are the same, ran-

domly re-ordering fitted excess returns across firm-day observations will

not systematically affect the distribution of 3,050 firm-specific sample

0.05-quantiles, {ŷ j
0.05,n j

}3050
j=1 . Figure A1 plots two kernel density estimates

of the cross-firm distribution of ŷ j
0.05,n j

. The first estimate, given by the

solid line, is a density estimate for the sample 0.05-quantiles using the fitted

excess returns based on the roughly five million actual returns we observe

for our 3,050 firms. The second estimate, given by the dashed line, is a

density estimate for the same statistics generated after randomly permuting

all observed fitted excess returns across firm-day observations. If firms’

excess returns came from the same underlying excess returns distribution,

these two density estimates would be equal up to random variation induced

by the permutation.

The figure suggests two important conclusions. First, much of the mass

of the actual excess returns distribution of sample 0.05-quantiles lies con-

siderably to the right of the permutation distribution. This means that firm-

specific 0.05-quantiles are systematically closer to the origin than they

would be if there were no heterogeneity in firms’ excess returns distribu-

tions. As a consequence, the standard approach will reject less often at level

0.05 than it would in the absence of cross-firm distributional heterogene-

ity, even given the same pooled excess returns distribution. This result is

consistent with the low rejection rates we find in the main text.
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Figure A1. The Cross-Firm Distribution of Actual Versus Permutation-Based Sam-
ple 0.05-Quantiles for Fitted Excess Returns.

Second, there is much more dispersion in the actual cross-firm distri-

bution of sample 0.05-quantiles than in the permutation-based distribution.

For example, the sample standard deviation of ŷ j
0.05,n j

across j is 0.035 in

the actual data, roughly an order of magnitude greater than the permuta-

tion distribution’s 0.0037. This finding implies that different firms will have

much more variation in rejection rates using the standard approach on any

random sample than they would if firms had the same underlying excess

returns distributions—just as we should expect if firms have systematically

differing true excess returns distributions.

While the visual evidence in Figure A1 is overwhelming, it does not

constitute a formal test. To carry one out, we use the fact that sample

quantiles from continuous distributions are asymptotically normally dis-

tributed, regardless of the distribution generating them. Formally, if F j = F

for all firms j , then
√

n j (ŷ j
α,n j

− y0
α)

d→ N (0, V0), where y0
α is the true

α-quantile of the common-across-firms excess returns distribution, V0 =
α(1 − α)/[ f0(y0

α)]2, and f0 is the density function associated with F . Under

the null, we can estimate yα using the sample α-quantile of the pooled dis-

tribution, which in our data is ŷ0
0.05,n j

= −0.050 (in other words, the sample

0.05-quantile of the pooled excess returns distribution is a reduction in firm
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value of 5%). We use Stata’s kdensity command to estimate the pooled

density at this value, with the result that f̂0(ŷ0.05) = 1.67.

Next, we define Ẑ j
0.05 = (n j/V̂0)

1/2(ŷ j
0.05,n j

− ŷ0
0.05,n j

), with V̂0 = 0.05 ×
0.95/1.672 = 0.017. Under the null hypothesis of a common excess returns

distribution, the sample {Ẑ j }3050
j=1 must come from an approximately stan-

dard normal distribution. However, the actual sample mean of this distri-

bution is 0.26, and the sample SD is 8.94, strongly suggesting that the

underlying distribution does not have mean 0 and SD 1. As with the per-

mutation figure, these results show that the cross-firm distribution of sam-

ple 0.05-quantiles is shifted to the right and is much more dispersed than

would be true if all excess returns came from the same distribution. In

addition, the sample skewness of {Ẑ j } is −1.13, and its sample kurtosis

is 4.70, casting doubt on whether the distribution of standardized sample

0.05-quantiles is normal at all. Indeed, the resulting JB statistic is 1,019,

greatly exceeding the critical value of 5.99 for a level-0.05 test. These results

clearly reject the null hypothesis that all firms’ excess returns come from a

single distribution.

A.3. Are Security-Specific Excess Return Distributions Normal?

The preceding analysis shows that the pooled distribution of excess

returns is not normally distributed, as well as that there is heterogene-

ity across firms in F j , the underlying excess returns distributions. But it

remains possible that each security’s excess returns distribution is normal,

with variances differing across securities. This combination would cause

both of the above results, and it would also be unproblematic for the stan-

dard approach in event studies involving a single firm, since each excess

return would come from some normal distribution.

To evaluate this possibility, we calculated the sample skewness and kur-

tosis values for excess returns within the size-n j sample for each security j .

All but two of the 3,050 securities in our sample have a value of JB > 5.99,

and the mean is over 75,000. Thus, there is overwhelming evidence against

firm-specific normality of excess returns. Combined with our theoretical

results, the foregoing empirical findings suggest that the standard approach

may involve substantial Type I distortions, when applied to firms one

at a time.
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Appendix B. Proof that the Asymptotic Null Distribution
of γ̂ is F

The proof that γ̂ − γ → F is based on the following two facts:

Fact 1. The event-date fitted excess return, âe = re − Xeβ̂ − γ̂ , exactly

equals 0, which implies γ̂ = re − Xeβ̂.

This fact is well known in the outlier-detection and predictive-test liter-

atures, e.g., see Belsley et al. (2004) or Dufour (1980). To prove it, observe

that the OLS estimation criterion is to choose g and b to minimize the

sum of squared estimated residuals, (re − Xeb − g)2 + ∑n
s=1(rs − Xsb)2.

Whatever value b takes, we can always make â2
e = 0 by setting γ̂ (b) = g =

re − Xeb. Thus, âe = 0 is a necessary condition for minimization of the OLS

criterion.

We note two related consequences of Fact 1. First, the OLS estimate β̂

from estimating (3) exactly equals the estimate that would be obtained by

estimating (2) with the event date excluded. This is true because, with âe

always equal to 0, the OLS objective function for choosing b is the same

when we estimate (3) with the event date included or estimate (2) with the

event date excluded. Second, the estimated standard error of the regression,

σ̂a , is the same regardless of whether we estimate equation (2) with the

event date excluded or (3) with the event date included. This result follows

by observing that because β̂ is the same in each case, and the estimated

event-date residual is zero, the sum of squared fitted residuals is identical

in each case. Any difference would therefore have to come from the denom-

inator used to estimate σ 2
a . When we estimate (2) rather than (3), we add one

observation but also one parameter, leaving the number of degrees of free-

dom unaffected at n − 2.

Fact 2. The estimated standard error of the event effect, σ̂γ , converges in

probability to σa , the standard deviation of the excess returns distribution F .

To prove Fact 2, we begin by noting that σ̂ 2
γ = σ̂ 2

α (D′Mx D)−1. Note

that the term D′Mx D equals 1 − Xe(X ′ X)−1 X ′
e, whose second term equals

trace[Xe(X ′ X)−1 X ′
e] = trace[(X ′ X/n)−1 X ′

e Xe/n]. By a law of large num-

bers, (X ′ X/n)−1 converges in probability to its expectation, which is finite

given standard moment conditions on Xs . Since there is only one event

date, and it is fixed, Xe does not change with n, and X ′
e Xe/n converges to

zero. Therefore, the second term in D′Mx D converges to 0 in probability, so
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D′Mx D converges to 1. Since σ̂ 2
a is consistent for σ 2

a , σ̂ 2
γ = σ̂ 2

a (D′Mx D)−1

converges to σ 2
a in probability, and thus σ̂a

p→ σa .

From these facts, it follows that the distribution of γ̂ becomes arbitrarily

close to the distribution of ae + γ , with probability converging to 1. This

result can be shown to hold as a special case of Corollary 3.1 of Dufour

et al. (1994). However, it is easy to prove it directly using (3) and Fact 1,

which together show that γ̂ = re − Xeβ̂ = γ + ae − Xe(β̂ − β). Since β̂

is consistent for β, the probability limit of γ̂ − γ − ae equals 0. A basic

result in large-sample statistics, called the asymptotic equivalence lemma

by White (2001, Lemma 4.7, p. 67), holds that if plim(γ̂ − γ ) − ae = 0,

then the asymptotic distribution of (γ̂ − γ ) and ae must be the same.

The distribution of ae is obviously unaffected by the number of pre-event

observations we choose to consider, so its asymptotic distribution is sim-

ply F from (3). The asymptotic equivalence lemma thus tells us that

limn→∞ Pr(γ̂ − γ � y) = F(y), proving the result.
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