

(1)

Journal

Of

Law & Innovation

© 2019 Journal of Law & Innovation

VOL. 2 OCTOBER 2019 NO. 1

ARTICLE

ALL SMART CONTRACTS ARE AMBIGUOUS

 JAMES GRIMMELMANN†

Smart contracts are written in programming languages rather than in
natural languages. This might seem to insulate them from ambiguity,
because the meaning of a program is determined by technical facts rather
than by social ones. It does not. Smart contracts can be ambiguous, too,
because technical facts depend on socially determined ones. To give
meaning to a computer program, a community of programmers and users
must agree on the semantics of the programming language in which it is
written. This is a social process, and a review of some
famous controversies involving blockchains and smart contracts shows
that it regularly creates serious ambiguities. In the most famous case, The
DAO hack, more than $150 million in virtual currency turned on the

† Professor of Law, Cornell Tech and Cornell Law School. I presented earlier versions of
this essay at the Algorithms, Big Data, and Contracting symposium at the University of
Pennsylvania Law School, at the Princeton Center for Information and Technology Policy, and
to a group of students at Cornell Tech. My thanks to the participants, and to Aislinn Black,
Andrew Appel, Matthew D’Amore, Karen Levy, Stephen Sachs, and Lawrence Solum. �is
essay may be freely reused under the terms of the Creative Commons Attribution 4.0
International license, https://creativecommons.org/licenses/by/4.0.

2 JOURNAL OF LAW & INNOVATION [Vol. 2: 1

contested semantics of a blockchain-based smart-contract programming
language.

INTRODUCTION .. 2
I. SMART CONTRACTS ... 3

A. Smart Contracts ... 5
B. Blockchains .. 7
C. Smart Contracts on Blockchains ... 8

II. AMBIGUITY ... 9
A. Ambiguity in Natural Languages .. 10
B. Ambiguity in Programming Languages .. 11

III. AMBIGUITY IN SMART CONTRACTS .. 14
A. Oracles ... 14
B. Upgrades .. 15
C. Forks ... 16
D. The DAO ... 17

CONCLUSION ... 19

Those who lack intimacy with the machine cannot be
expected a priori to have insight into its limitations. . . .
Even in the most formal and most mechanical of
domains, trust in the machine cannot entirely replace
trust in the human collectivity.1

INTRODUCTION

“Smart contracts” are neither smart nor contracts,2 but the name has
stuck. Instead, they are mechanisms that enforce agreements using
software rather than law.3 The contracting parties write a computer
program that embodies their agreement. The program updates as they
perform their obligations, and automatically delivers the appropriate
resources to them as they become entitled to payment. Smart contracts

1 DONALD A. MACKENZIE, MECHANIZING PROOF: COMPUTING, RISK, AND TRUST 334
(2001).

2 Ed Felten, Smart Contracts: Neither Smart nor Contracts?, FREEDOM TO TINKER (Feb.
20, 2017), https://freedom-to-tinker.com/2017/02/20/smart-contracts-neither-smart-not-
contracts. I will refer to “smart contracts” and “legal contracts” in this essay.

3 Id. For more on the terminology and a discussion of how smart contracts relate to legal
contracts, see infra Part I.

2019] ALL SMART CONTRACTS ARE AMBIGUOUS 3

range from simple escrow schemes to immensely complicated joint
ventures.

One argument in favor of smart contracts emphasizes the clarity and
certainty of code. Legal contracts are written in natural language, which
is full of ambiguity, and must be interpreted subjectively by fallible
humans. Smart contracts are written in programming languages, which
are unambiguous and executed objectively by infallible computers. The
result is that anyone reading a smart contract can predict what it will do
in response to any conceivable set of events. Legal contracts are
ambiguous; smart contracts are not.

So goes the argument. But it is wrong. Smart contracts do not
eliminate ambiguity — they hide it. The meaning of a legal contract is
a social fact. So too is the meaning of a smart contract. It does not
depend directly on what people think it means when they read it, as a
legal contract’s meaning does. Instead, it depends indirectly on what
people think about the computer systems on which it runs. Smart
contracts may in fact be more predictable and consistent than legal
contracts. Or they may not. But the argument that smart contracts are
not ambiguous because they cannot be is false. Worse than that, it is
dangerous, because it distracts attention from the hard work required to
make smart contracts work in the real world.

Part I of this essay reviews how smart contracts on blockchains
work. Part II discusses ambiguity in natural and programming
languages. Part III gives examples of ambiguous smart contracts. A brief
conclusion then draws out some implications for blockchain
governance.

I. SMART CONTRACTS

The defining feature of smart contracts is automation.4 They are
executed by hardware and software — physical and digital systems
embedded in the world — rather than by human instructions. Thus, they
provide a way for parties to enjoy the benefits of binding contracts
without relying on a legal system: private law without a public authority.

The relationship between smart contracts and legal contracts is
complicated.5 It is helpful to make two additional distinctions. One is

4 See Nick Szabo, Smart Contracts: Building Blocks for Digital Markets, 16 EXTROPY 1, 1
(1996); Nick Szabo, Formalizing and Securing Relationships on Public Networks, 2 FIRST
MONDAY (1997).

5 See generally J.G. Allen, Wrapped and Stacked: ‘Smart Contracts’ and the Interaction of
Natural and Formal Language, 14 EUR. REV. CONT. L. 307 (2018) (explaining the intersections
and differences between smart contracts and legal contracts); Lauren Henry Scholz, Algorithmic

4 JOURNAL OF LAW & INNOVATION [Vol. 2: 1

between relations of obligation, like the legal obligation to pay $5 on
Tuesday, and the instruments which evidence and establish those
relations, like an IOU saying, “I will gladly pay you Tuesday for a
hamburger today.”6 The other is between natural and formal languages.
Natural languages are used by people to communicate with each other.
They can evolve entirely without conscious direction, like English and
Mandarin, or they can be created, like Klingon and Esperanto. Formal
languages include programming languages, which consist of commands
to a computer, as well as various mathematical and logical formalisms.7

The paradigm of a legal contract is a relation of legal obligation
based on a natural-language instrument. Because legal contracts can be
oral or illusory, there can be legal obligations without a corresponding
instrument, and vice-versa. In additional, legal contracts can incorporate
terms in formal languages. For example, the price term in a contract
could be expressed using an algebraic equation or based on the output
of a program. The parties’ obligations would then be determined in part
by the result of a computation.

Obligations can also be technical rather than legal. A technical
obligation is one that is enforced immediately by a system that prevents
the prohibited conduct ex ante rather than punishing it ex post.8 All but
the simplest technical obligations must be based on an instrument, and
that instrument must be written in a programming language — this is
just another way of saying that computers do only what they are
programmed to do. The paradigm of a smart contract is thus a technical
obligation based on a formal-language instrument. This is where the
conflation of obligation and instrument in smart contracts comes from
— and also where it breaks down. Because a legal obligation can be
embodied in part in a formal-language instrument, a legal obligation
may therefore “wrap” a technical obligation.9 On the other hand, parties
who enter into a technical obligation at the same time may or may not
enter into legal obligations effectively wrapping it — or they may even
enter into legal obligations without knowing it or intending to.10 Much

Contracts, 20 STAN. TECH. L. REV. 128, 128, 136 (2017) (outlining various uses of smart contracts
and arguing that ‘black box’ algorithmic contracts are likely unenforceable); Harry Surden,
Computable Contracts, 46 U.C. DAVIS L. REV. 629, 688-89 (2012) (explaining that firms are
driven to adopt smart contracts in part because of the advantages of applying computers’ high
processing power to contractual obligations).

6 Allen, supra note 5.
7 Id.
8 James Grimmelmann, Note, Regulation by Software, 114 YALE L.J. 1719, 1729–30 (2005).
9 Allen, supra note 5.
10 See Adam J. Kolber, Not-So-Smart Blockchain Contracts and Artificial Responsibility, 21

STAN. TECH. L. REV. 198, 214-26 (2018) (distinguishing the “code” from the “contract”).

2019] ALL SMART CONTRACTS ARE AMBIGUOUS 5

of the literature about whether “smart contracts” are “contracts” deals
with this last question, but focusing too much on it obscures the other
similarities and differences in the analogy.11

A. Smart Contracts

The turn to automation is motivated by three well-known difficulties
with natural language and human institutions. The first is ambiguity — the
fear that because legal contracts are written in natural language, they will
be interpreted differently by different parties and judges.12 The second is
corruption — the fear that human judges who interpret and enforce legal
contracts can be threatened or bribed.13 A third is enforcement — the fear
that parties might be able to ignore a legal judgment by fleeing the
jurisdiction, delay, physical force, hiding assets, or never having assets in
the first place.14 These are opportunities for smart contracts to improve on
legal contracts; they are also challenges that smart contracts must confront.
In this essay, I will focus on ambiguity, although, as we will see, the three
are closely related.

Smart contracts are designed to respond to all three of these concerns
by expressing contractual terms in a programming language rather than in
a natural language.15 Consider a standard example of a smart contract: a

11 In this essay, I focus on the parallel with contracts, rather than with other kinds of legal
instruments, such as wills, statutes, and terms of service, which raise distinct interpretive issues.
I even avoid dealing with many interesting legal interpretive issues raised by smart contracts,
such as whether they should be regarded as contracts of adhesion.

12 Max Raskin, The Law and Legality of Smart Contracts, 1 GEO. L. TECH. REV. 305, 324-
25 (2017). See also Surden supra note 5; AARON WRIGHT & PRIMAVERA DE FILIPPI,
BLOCKCHAIN AND THE LAW: THE RULE OF CODE (2018); Usha Rodrigues, Law and the
Blockchain, 104 IOWA L. REV. 679, 682 (2019). Or, to quote from Roger Traynor’s famous
opinion in Pacific Gas & Electric Co. v. G.W .Thomas Drayage & Rigging Co.:

If words had absolute and constant referents, it might be possible to discover
contractual intention in the words themselves and in the manner in which they were
arranged. Words … do not have absolute and constant referents. A word is a symbol
of thought but has no arbitrary and fixed meaning like a symbol of algebra or
chemistry. The meaning of particular words or groups of words varies with …
context and surrounding circumstances … A word has no meaning apart from these
factors; much less does it have an objective meaning, one true meaning.

Pac. Gas & Elec. Co. v. G.W. �omas Drayage & Rigging Co., 442 P.2d 641, 644 (1968)
(citations omitted). A term in a programming language, on the other hand, appears more like a
“symbol of algebra” with an “absolute and constant referent.” Punch line: symbols of algebra
don’t have absolute and constant referents, either.

13 Raskin, supra note 12, at 319.
14 See Szabo, Formalizing and Securing, supra note 4; Szabo, Building Blocks, supra note

4.
15 In theory, a smart contract could be implemented in hardware rather than in software. But

any hardware sophisticated enough to implement a nontrivial smart contract would need to be

6 JOURNAL OF LAW & INNOVATION [Vol. 2: 1

vending machine.16 Expressing the contract for the sale of a pack of
Skittles in a programming language resolves all sources of ambiguity,
because programming languages are unambiguous. The machine’s code to
dispense an item from row C4 when the buyer has inserted $1.50 is
completely specified. Committing the contract to the software resolves the
fear of corruption, because computers are incorruptible. Threats and offers
of bribes literally mean nothing to the vending machine. And the smart
contract resolves the concern about enforcement because it takes direct
control of the relevant resources. No money, no Skittles.

The vending machine is obviously limited. Scaling it up to a true smart
contract platform requires identifying and overcoming its major
shortcomings:

1. First, the vending machine is special-purpose: it is good only for

spot candy sales. A better smart-contract platform would be
general-purpose, capable of being used by many parties for many
kinds of contracts.

2. Second, the vending machine’s code is unobservable by the user.
Unambiguous code can still be malicious. Every time you put a
coin in one, you are trusting that its code really does instruct it to
dispense Skittles when you push C4. A better smart-contract
platform would make contract code visible to affected parties.

3. Third, while the machine is by definition incorruptible, its

programmer and its operator are not. You won’t get anywhere
pointing a gun at a vending machine, but you might if you point a
gun at the technician with a key to the coinbox when he comes to
restock the Skittles. A better smart-contract platform would be
decentralized. The power to supervise and control the execution
of the smart-contract code would be dispersed over a large
population, so that no individual or small group’s corruption
threatens the contract.

4. Fourth, the machine is physically vulnerable. If you punch a hole

in the window, you can grab all the Skittles you want. A better
smart-contract platform would have direct control over resources

specified in some way, and that specification is effectively equivalent to a computer program. It
is simply a program that is compiled into special-purpose hardware, rather than into object code
for execution on general-purpose hardware.

16 Szabo, Formalizing and Securing, supra note 4.

2019] ALL SMART CONTRACTS ARE AMBIGUOUS 7

whenever possible. That is, whenever it could it would use virtual
resources rather than physical ones.

All of these design goals point in the same direction: put the smart

contract on a blockchain.

B. Blockchains

At heart, a blockchain is a ledger of transactions. It organizes digital
records of transactions into discrete chunks (blocks), and then maintains a
chronological list of those blocks (the chain). A chain of blocks: a
blockchain. Although the basic computer-science ideas are older,17 “Satoshi
Nakamoto’s” Bitcoin proposal put them together in a clever way, greater
than the sum of its parts.18

The first important design choice is that the transactions in a blockchain
are cryptographically secure. New transactions are processed only if they
are digitally signed by the relevant party (usually the one who pays for them
or transfers assets) using a private key that only they (should) know.19 New
transactions are also required to be consistent with the history of transactions
on the blockchain: you can’t transfer Bitcoin unless you received it in a
previous transaction. Together, these consistency constraints mean that only
parties who have digital assets are able to use them in transactions.

The second important design choice is that the blockchain is a distributed
ledger. Every participant has (or could have, if they wished) a complete copy
of the entire blockchain. No participant’s copy is canonical; all are equally
authoritative. Thus, there is no centralized recordkeeper with authority over
the ledger. This is where blockchains achieve their resistance to corruption:
anyone hoping to tamper with the ledger will need to suborn a significant
fraction of participants, not just one.20

17 See Arvind Narayanan & Jeremy Clark, Bitcoin’s Academic Pedigree, 60 COMM. OF THE
ACM 36 (2017) (describing the basic structure of blockchain). See generally FINN BRUNTON,
DIGITAL CASH: THE UNKNOWN HISTORY OF THE ANARCHISTS, UTOPIANS, AND
TECHNOLOGISTS WHO BUILT CRYPTOCURRENCY (2019).

18 Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System (2008),
https://bitcoin.org/bitcoin.pdf. See generally ARVIND NARAYANAN ET AL., BITCOIN AND
CRYPTOCURRENCY TECHNOLOGIES: A COMPREHENSIVE INTRODUCTION (2016).

19 �is is possible because with modern public-key encryption, other participants can verify
that a message was properly signed by the private key holder even though they do not themselves
have the private key.

20 �e redundancy also means that blockchains are practically impervious to hardware
errors: any idiosyncratic faulty execution on one participant’s computer will be massively
outvoted by the collectivity of participants whose computers did not malfunction. �us, in what
follows, I will ignore the philosophical objection that no program can guarantee that it runs
correctly on actual hardware. See, e.g., James H. Fetzer, Program Verification: The Very Idea, 37

8 JOURNAL OF LAW & INNOVATION [Vol. 2: 1

The third important design choice solves a problem introduced by the
second. Distributed systems need to reach some form of consensus: if
multiple parties can each have copies of the ledger, there must be some way
to keep their copies in sync, or to deal with the disagreement if they are not.
Bitcoin’s mechanism to do so — the Bitcoin consensus protocol — is the
most ingenious part of Nakamoto’s design for Bitcoin and is in some ways
the most interesting and influential thing about it.

In brief, the Bitcoin consensus protocol asks participants (called
“miners”) to accept any valid new block of transactions that one miner
proposes — but it makes the process of generating a valid new block
onerous and unpredictable. (The difficulty is regularly adjusted so that the
entire community of miners can on average generate only one new block
every ten minutes.) When a miner broadcasts the block to other miners, they
examine it, confirm that it satisfies the consistency constraints, and then with
majority approval, add it to the current blockchain. Then the process begins
anew to generate the next block.

Incentives are needed to make miners generate and accept blocks. A
miner receives a “block reward” of new Bitcoin for each block they
successfully generate, and “transaction fees” paid by users to add their
transactions to a block. Their incentives to accept valid blocks proposed by
other miners come from the value of consensus itself: new blocks can only
be added to what everyone else agrees is the current end of the chain. So a
miner who fails to approve a valid block may be cutting herself off from
future mining rewards: any blocks she generates will not be at the end of the
chain. In equilibrium, the dominant individual strategy for individual miners
is typically to accept any valid new block and immediately start trying to
generate a block that follows it.

C. Smart Contracts on Blockchains

Now let us consider how to put smart contracts on a blockchain. The
basic idea is simple. There is still a ledger of transactions, maintained in
the same way as the Bitcoin blockchain. The difference is that these
transactions are richer: they can create and execute computer programs,
not just transfer resources.

These programs run on a virtual machine. As the name implies, it
executes instructions like an actual computer, but it is entirely simulated.
The Ethereum blockchain, for example, implements the Ethereum Virtual

COMMS. OF THE ACM 1048, 1059–60 (1988). When it comes to hardware faults, the objection is
ontologically impeccable but practically irrelevant in this context. �e more relevant objection,
as I argue below, is that no program can guarantee that people will run it as intended.

2019] ALL SMART CONTRACTS ARE AMBIGUOUS 9

Machine (EVM). One kind of transaction on the Ethereum blockchain
simply transfers its native currency unit — called “Ether” — from one user
to another. Another kind of transaction takes a program written in the
EVM’s native language (“EVM bytecode”) and runs it on the EVM.

This last sentence is deceptively simple, so it is worth unpacking. The
EVM is a simulated computer. It functions according to rules described in
the Ethereum protocol21 — that is, each participant on the blockchain
independently applies those rules to each new transaction and confirms
that they yield the same result. The consensus protocol ensures that each
user observes the same transfer and program transactions. Thus, just as the
participants agree on each user’s current balance of Ether because they
agree on how each transfer transaction changes those balances, they agree
on the EVM’s current state because they agree on how each program
transaction changes the EVM. The rules are significantly more
complicated (though far less complicated than the circuits in a typical
physical computer), but they are deterministic.

There are a few more details worth noting. First, EVM bytecode
includes instructions for programs to send and receive Ether. A program
can transact with users (or with other programs) by executing these
instructions. Second, programs can be persistent: one user can load a
program into the EVM with an initial transaction, and other users can then
interact with it in subsequent transactions (if and how its code allows, that
is). Together, these features enable smart contracts: I can offer you a smart
contract by loading its terms into the EVM, and you can accept by sending
it an appropriate transaction. Third, these program transactions are not
free. Ethereum has a complicated metering scheme in which programs
consume a resource called “gas” as they run: users must pay (with Ether)
for enough gas for the programs they run. The design is both clever and
ambitious.

II. AMBIGUITY

It might be hoped that this approach to putting smart contracts on a
blockchain solves the three problems with legal contracts identified
above. The smart contracts are unambiguous because they are written in
programming languages. The smart contracts are incorruptible because
control of the blockchain is widely distributed. And enforcement is

21 See generally GAVIN WOOD, ETHEREUM: A SECURE DECENTRALISED GENERALISED

TRANSACTION LEDGER (2014); ANDREAS M. ANTONOPOULOS & GAVIN WOOD, MASTERING
ETHEREUM: BUILDING SMART CONTRACTS AND DAPPS (1st ed. 2018).

10 JOURNAL OF LAW & INNOVATION [Vol. 2: 1

automatic because the smart contract directly controls resources on the
blockchain. I believe these hopes are overstated.

A. Ambiguity in Natural Languages

Consider a famous example of the ambiguity of natural language. In
Frigaliment Importing Co. v. BNS International Sales Corp., the parties
disagreed on the meaning of “chicken.”22 Their contract called for the
delivery of 100,000 pounds of “"US Fresh Frozen Chicken, Grade A,
Government Inspected, Eviscerated.” The buyer thought that “chicken”
meant “a young chicken, suitable for broiling and frying.”23 The seller
thought it meant “any bird of that genus.”24 The court considered
dictionary definitions, the text of the contract, the parties’ negotiations
(in a mixture of English and German), evidence of trade usage in the
chicken-evisceration industry, USDA inspection standards, and
prevailing market prices, only to conclude that there was evidence on
both sides, so the plaintiff had failed to carry its burden of “showing that
‘chicken’ was used in the narrower rather than in the broader sense.”25
In short, “chicken” was ambiguous.

The parties in Frigaliment could have prevented their particular
dispute if they had written “young chicken suitable for broiling.”26 But
that would just have raised further ambiguities in other cases. What
counts as “suitable for broiling?” Suitable for broiling at 500 degrees
Fahrenheit? 550? For how long? Ambiguity always remains.

The problem is inherent in the nature of natural language, because
natural language is inherently social. The meaning of a text is not the
(single) meaning its author intended, but the (possibly different and
possibly plural) meanings it has within the relevant linguistic
community. Even the meanings given in “objective” sources like
dictionaries — putting aside all of the interpretive problems of how to
read those sources — depend on how people actually use words. And
since the legal effect of a contract is determined by the interpretation of
its terms, the meaning of a contract is irreducibly social.

22 Frigaliment Importing Co., Ltd., v. BNS Intl Sales Corp., 190 F. Supp. 116, 117 (S.D.N.Y.

1960).
23 Id.
24 Id.
25 Id. at 121.
26 Or “any bird of the genus gallus gallus domesticus” if they had settled on the seller’s

preferred meaning rather than the buyer’s.

2019] ALL SMART CONTRACTS ARE AMBIGUOUS 11

B. Ambiguity in Programming Languages

To repeat, the meaning of “chicken” is a socially contingent fact. It
depends on how people actually use the word in the world. Its meaning
can vary and be misunderstood.

It might be argued, however, that the meaning of an expression in a
programming language is a technical fact rather than a socially
contingent fact. 2**3 in Python will always evaluate to 8. Its meaning
never changes, and if you think it means 9 you are wrong. Meanings
that depend on socially contingent facts can be ambiguous, but
meanings that depend on technical facts cannot.

This account is wrong. It is true that competent programmers in a
given language will agree on a program’s meaning (at least for simple
programs). And their agreement does depend on technical facts about
the language that are independent of particular programmers’
idiosyncratic beliefs. But these technical facts are still social, just at a
deeper level.

In a nutshell, no computer program can determine its own semantics.
The program may have a fixed, objective syntax. But the act of giving
meaning to that syntax — whether by talking about the program or by
running it — requires something outside the program itself. Any
strategy for doing so ultimately depends on social processes.

Consider Python. The Python Reference Manual says that ** “yields
its left argument raised to the power of its right argument.”27 This is an
informal specification: it describes the semantics of Python programs
using natural language. There are also formal (if unofficial) semantics
for Python, which use mathematical notation to define the behavior of
Python programs.28 Or one could run CPython, the most commonly used
Python implementation,29 and confirm that it evaluates 2**3 to 8.

But wait! Even seemingly innocuous phrases like “raised to the
power of” can conceal difficulties. What is 0 raised to the power of 0?
Is it 1 because x0 = 1 for all x≠0? Is it 0 because 0y=0 for all y≠0? Is it
meaningless in the same way that applebanana is? This is the kind of
question on which mathematicians can disagree.30 Replacing the

27 GUIDO VAN ROSSUM, THE PYTHON LANGUAGE REFERENCE, RELEASE 3.2.3 49 (Fred L.
Drake, Jr. ed., 2012).

28 See, e.g., Joe Gibbs Politz et al., Python: The Full Monty, in PROC. OF THE 2013 ACM
SIGPLAN INT L CONFERENCE ON OBJECT-ORIENTED PROGRAMMING SYSTEMS, LANGUAGES,
AND APPLICATIONS 217 (ACM Press 2013).

29 See ALTERNATIVE PYTHON IMPLEMENTATIONS,
https://www.python.org/download/alternatives (last visited May 1, 2019) (calling CPython “the
‘traditional’ implementation of Python.”).

30 Donald E. Knuth, Two Notes on Notation, 99 AM. MATH. MONTHLY 403, 407–08 (1992).

12 JOURNAL OF LAW & INNOVATION [Vol. 2: 1

English phrase “raised to the power of” with the mathematical notation
“xy” — as one might in a formal semantics — does not conclusively
settle the question, because it is the underlying mathematical concept,
not the notation, that is the subject of disagreement. Even CPython is of
two minds on the matter. The integer expression 0**0 evaluates to 1, but
the equivalent decimal floating-point expression produces an “Invalid
operation” error.31 This isn’t just a Python issue, either. The most recent
C standard says that pow(0.0, 0.0) is undefined, but many
implementations return 1.0.32 Is the standard correct? Or is it wrong in
the way that an out-of-date dictionary is — no longer reflective of actual
usage?

One might reasonably dismiss 00 as an unusual, even pathological,
example. But it demonstrates in miniature the dependence of technical
questions on social ones. Informal specifications, formal semantics, and
reference implementations all define the meaning of a program created
by humans in terms of something else also created by humans. So the
meaning of any specific program rests on a foundation of some prior
agreement about how to interpret some larger class of programs.
Specifications, formal semantics, and reference implementations are not
authoritative as a matter of first principles; they are authoritative
because people agreed that they are. Why doesn’t 2**3 in Python
evaluate to 9? Not because that’s what 2**3 inherently means — any
more than the seven-letter sequence C-H-I-C-K-E-N inherently means
any gallus gallus domesticus. In 1991, Guido van Rossum selected ** as
an exponentiation operator for Python and defined its behavior. He
could have used ^ instead and made ** a multiplication operator. If he
had, then 2**3 would evaluate to 6.

But, one might ask, isn’t it a logical necessity that 23=8? As long as
the Python specification defines x**y as xy, don’t the laws of
mathematics require that it evaluate to 8 in any correct implementation
of Python? There is something to this point, which serves as the
foundation of the field of program verification: rigorous standards of
proof and truth can be applied to mathematical models of programs.
Given a formal semantics of a programming language and a precise
specification of a program’s operating requirements, it is sometimes
possible to produce a logically valid proof that the actual program

31 See Devin Jeanpierre, Issue 23201: Decimal(0)**0 is an error, 0**0 is 1, but Decimal(0)

== 0, PYTHON BUG TRACKER (Jan. 9, 2015, 3:13 AM), https://bugs.python.org/issue23201.
32 For example, the Apple LLVM 10.0.0 compiler displays this behavior (last tested February

19, 2019 on a MacBook Pro running macOS 10.13.6). I am grateful to Russ Cox for this example.

2019] ALL SMART CONTRACTS ARE AMBIGUOUS 13

correctly implements the specification.33 But there is a crucial step
missing: no formal proof is possible that the specification itself
corresponds to anything in the outside world.34 Change the language
semantics and all you are left with is an incorrect program and an invalid
“proof” of its correctness.

Here is another way of appreciating the point. Consider the Python
expression 3/2. What will happen if you evaluate it? It depends. If you
run it in Python version 2.7.15, where / is an integer division operator, it
will return 1. But if you run it in Python version 3.7.1, where / is an exact
division operator (and // is the integer division operator), it will return
1.5. “Python” is not one thing. What we mean when we say “Python” is
socially determined.35 Under some circumstances, we mean Python
2.7.15; under others we mean Python 3.7.1.36 (If we mean Python 2.7.15,
then when we say “the value of the Python expression 3/2” we refer to
1, but if we mean Python 3.7.1, when we say “the value of the Python
expression 3/2” we refer to 1.5. The value of the expression is
unambiguous relative to a specific programming language, but that is
like saying that the meaning of “chicken” is unambiguous relative to an
interpretive convention in which it means any gallus gallus domesticus.
All the important work is done by the claim that this program is written
in that language. Such claims can only be established by reference to a
community of programmers and users.

2**3 in Python is unambiguously 8, but that is only because Python
users have already agreed on what “Python” is. If they agreed
differently, “Python” would be different and so might 2**3. Collective
negotiation over the agreed meaning of “Python” is constantly taking
place: in particular, it happens every time there is a new version release.
Among other changes, Python 3.7 added a new function called
breakpoint, but it also made await a reserved keyword.37 Programs
that call the breakpoint function work in Python 3.7 but not in Python
3.6; programs with a variable named await work in Python 3.6 but not
in Python 3.7. These changes are debated at immense length on Python
developer mailing lists,38 and each time there is a new release, everyone

33 See generally MACKENZIE, supra note 1 (describing history of controversies over program
verification).

34 Brian Cantwell Smith, Limits of Correctness in Computers, in PROGRAM VERIFICATION:
FUNDAMENTAL ISSUES IN COMPUTER SCIENCE 275 (Timothy R. Colburn et al. eds., 1993).

35 So, for that matter, is what we mean when we say “Python 2.7.15.”
36 In linguistic terms, the phrase “Python” is underspecified and requires pragmatic

enrichment.
37 Python Software Foundation, What’s New In Python 3.7 (Elvis Pranskevichus ed.),

https://docs.python.org/3.7/whatsnew/3.7.html.
38 See, e.g., PYTHON-DEV, https://mail.python.org/mailman/listinfo/python-dev.

14 JOURNAL OF LAW & INNOVATION [Vol. 2: 1

who is responsible for writing or running Python code decides whether
or not to upgrade their version to the latest one. These choices
collectively establish the meanings of Python programs — and change
those meanings over time. Technical facts depend on socially
determined ones.

More precisely, we perceive as fixed technical facts the successful
result of coming to social consensus on programming language
semantics. A community of programmers and users agrees on a process
to extract technical meaning from program text. Developers implement
that process on different computers, with different tools, in different
contexts. Most of the time, running a program on different
implementations will yield the same result. When it does not, technical
meaning breaks down.

III. AMBIGUITY IN SMART CONTRACTS

Back to blockchains. We might be able to ignore all of this if smart-
contract blockchains never experienced breakdown.39 But in fact, there are
difficulties about the meanings of blockchain programs all the time. I will
present four examples, in increasingly dire order.

A. Oracles

How does a smart contract observe the world? Suppose, for example,
that it needs to release funds from escrow when the seller has delivered a
car. The car is a real thing in the real world, not a virtual thing defined by
the blockchain VM. The smart contract cannot directly observe it.

The standard solution is to rely on an oracle to input real-world data in
a form usable by a smart contract.40 The simplest version of an oracle is
simply a trusted user, who is asked to commit transactions verifying that a
given event did or not take place, and perhaps supplying some details. This
is basically a smart-contract version of an arbitrator or third-party
certification. The next step up in complexity is to use a trusted data feed.
Trusted software on the blockchain consults some online but off-
blockchain data source — like a major financial website’s stock quotations
— and enters it into the blockchain.41 The most sophisticated form of

39 See TERRY WINOGRAD & FERNANDO FLORES, UNDERSTANDING COMPUTERS AND

COGNITION: A NEW FOUNDATION FOR DESIGN (1987) (applying Heiddeger’s concept of
breakdown to the skew between computer models of the world and the world itself).

40 See ANTONOPOULOS & WOOD, supra note 21, at 253–66.
41 For a sophisticated authenticated data feed solution, see Fan Zhang et al., Town Crier: An

Authenticated Data Feed for Smart Contracts 270 (2016).

2019] ALL SMART CONTRACTS ARE AMBIGUOUS 15

oracle is a consensus oracle: a group of users serve as oracles and the
software extracts whatever value they have agreed on. Even simple
majority voting can make it harder to corrupt enough involved users to
trick a given smart contract, and some consensus oracles use their own
consensus protocols, in which the users are rewarded for their participation
and for reaching agreement.

But is the oracle correct? We might describe this as a problem of
corruption: an oracle that says the car was delivered when it was not is
mistaken or lying in the way that a bad judge will be mistaken or lying
about a legal contract. Consensus oracles, following the standard
blockchain mantra of decentralization, seek to limit corruption by using
protocols that encourage correct agreement among the parties. But of
course the oracle software has no unmediated access to the truth in the
world. Instead, the best its protocols can do is encourage parties to agree
— in the hopes that truth will be a more salient focal point than a lie, and
that long-term incentives will lead parties to select honest oracles.

The problem of observing the world is also a problem of ambiguity.
The world is complex, and contract terms map ambiguously onto the
world. An oracle is a way of resolving the ambiguity in how a contract
term applies to the infinite variety of factual patterns that could happen in
the world. An oracle charged with determining whether the seller in
Frigalament has performed its obligations resolves any ambiguity about
the meaning of “chicken.” If the oracle says the seller has performed, then
what was delivered was “chicken.” If the oracle says the seller has not
performed as required, then whatever was delivered was not “chicken.”42

An oracle’s consensus protocol, then, is crucial to how it operates.
Single-user oracles and trusted data feeds have simple trust models and
consensus protocols; consensus oracles have more sophisticated ones. This
leads to two points. The obvious one is that an oracle’s resistance to
corruption is only as good as its consensus mechanism. The subtler one is
that an oracle’s ability to resolve ambiguity is only as good as its consensus
mechanism.

B. Upgrades

Blockchains also upgrade. In 2017, Bitcoin upgraded to implement
“segregated witness” (also known as “SegWit”).43 Some data in
transactions was moved from one portion of the block to another in a way

42 Allen, supra note 5.
43 Timothy B. Lee, Bitcoin compromise collapses, leaving future growth in doubt, ARS

TECHNICA (Nov. 9, 2017), https://arstechnica.com/tech-policy/2017/11/bitcoin-compromise-
collapses-leaving-future-growth-in-doubt/.

16 JOURNAL OF LAW & INNOVATION [Vol. 2: 1

that effectively increased the number of transactions that could fit in each
block.44 The blockchain before SegWit and the blockchain after had
different semantics.

Actually, I’m hiding the ball by saying that “Bitcoin upgraded.”
Blockchains don’t upgrade themselves; people upgrade blockchains.
Bitcoin’s users collectively acted to modify Bitcoin’s semantics in ways
that would invalidate some transactions. A critical mass of miners
announced their support for SegWit, and then on the agreed-upon date
started enforcing the new rules. Everyone else went along for the ride. It
was just like switching from Python 3.6 to Python 3.7, except that with a
blockchain the pressure for consensus is much stronger. Today you can
easily find users still happily running Python 3.6, but you will not easily
find Bitcoin miners ignoring SegWit.

It’s consensus all the way down.45 The “Bitcoin blockchain” exists
only because people agree that it does and what it is. Bitcoin’s consensus
protocols help coordinate that agreement; indeed, they incentivize it. But
the protocols themselves cannot establish their own rule of recognition. A
user community can always collectively change or ignore them. This is
exactly what happens in an upgrade.

C. Forks

Upgrades don’t always go smoothly. SegWit was intended (by some
users at least) as the first of two linked upgrades to increase Bitcoin’s
capacity. Following the SegWit upgrade, according to a widely reported-
on compromise among various Bitcoin developers, Bitcoin was also
supposed to increase its block size from 1 megabyte to 8 megabytes,
octupling the number of transactions it could process per block.

This . . . didn’t happen.46 Instead, following the SegWit upgrade,
some miners announced they were against the block size upgrade, while
others announced they were for it. Discussions and negotiations broke
down, and Bitcoin forked into two blockchains.47 One of these
blockchains, now known as Bitcoin Cash, increased its block size to 8
megabytes (and then increased it again to 32 megabytes, having

44 See Jonathan Cross, Bitcoin Improvement Proposal 141, GITHUB (March 10, 2018),

https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki.
45 Jeffrey M. Lipshaw, The Persistence of “Dumb” Contracts, 2 STAN. J. BLOCKCHAIN L. &

POL’Y 1, 10 (2018) (smart contracts “have value … simply because there is universal consensus
they are what they are”).

46 Lee, supra note 42.
47 Benito Arruñada, Blockchain’s Struggle to Deliver Impersonal Exchange, 19 MINN. J.L.

SCI. & TECH. 55, 73–75 (2018).

2019] ALL SMART CONTRACTS ARE AMBIGUOUS 17

established the principle that the block size should grow as needed). The
other blockchain, now known as Bitcoin, still has roughly 1 megabyte
blocks.48 The blockchains recognize the same history up until the first
>1 megabyte block on Bitcoin Cash, after which they diverge.

Bitcoin and Bitcoin Cash now have different semantics. Is a block
valid? The question is unanswerable in the abstract. It can only be
answered with reference to a particular blockchain and its user
community. A 32-megabyte block is valid according to the agreed-upon
semantics of the Bitcoin Cash community, but not according to the
Bitcoin community. (It should be obvious that which of them ends up
with the “Bitcoin” name is a socially determined fact.)

Blockchain forks are consensus failures. Each blockchain by itself
achieves local consensus, but there is no global consensus. Blockchain
forks also create explicit ambiguity. The choice of blockchain exposes
ambiguity not present when looking at each blockchain by itself. These
two facts are inextricably linked, because it is consensus that resolves
ambiguity on a blockchain.

Literally anything on a blockchain is subject to the latent ambiguity
that the blockchain itself could be upgraded out from underneath it.49
Whether this actually happens is inescapably political. When there is a
disagreement within a blockchain community about a particular
upgrade, one of three things could happen. If the pro-upgrade faction
backs down, the status quo prevails. If the anti-upgrade faction backs
down, the upgrade happens. If neither faction backs down, the
blockchain forks. (It should be obvious that which faction, if either,
backs down, is an empirical and socially determined fact.)

D. The DAO

The DAO — the initialism is short for “distributed autonomous
organization” — was a kind of democratic online venture-capital fund.50
A group of investors planned to join together by using a smart contract
on the Ethereum blockchain to manage their affairs, rather than by
forming a traditional business organization under the laws of a state.
One (imperfect) analogy would be to a venture capital fund operated as

48 I say “roughly” because SegWit complicated the formula for computing block size.
49 See Adam J. Kolber, Not-So-Smart Blockchain Contracts and Artificial Responsibility, 21

STAN. TECH. L. REV. 198, 223 (2018) (“So if you agreed to follow the code in the broad sense,
then you also agreed to the possibility of a hard fork.”).

50 See generally Carla L. Reyes et al., Distributed Governance, 59 WM. & MARY L. REV.
ONLINE 1 (2017); Usha Rodrigues, Law and the Blockchain, 104 IOWA L. REV. 679 (2019).

18 JOURNAL OF LAW & INNOVATION [Vol. 2: 1

a general partnership with all of the participants voting on each funding
decision.51

It flamed out spectacularly.52 A clever but still unidentified Ethereum
user discovered a subtle bug in The DAO contract’s code and was able
to transfer approximately $60 million worth of Ether to a contract that
they alone controlled.53

The transfers were quickly noticed, leading to a sharp debate among
The DAO and Ethereum users over how to respond.54 In the end, a large
majority of Ethereum users upgraded Ethereum to recognize as valid a
new special block with a transaction that unwound The DAO and
returned all the funds to the original investors. On this blockchain,
which is still known as Ethereum, The DAO and The DAO hack
effectively never happened. A minority of users refused to recognize the
special block because they considered it contrary to the spirit of smart
contracts, blockchains, and Ethereum.55 On this blockchain, which is
known as Ethereum Classic, The DAO and The DAO hack did happen.
The two blockchains have different semantics. Indeed, they are
incompatible. Transactions now can be entered either on the Ethereum
blockchain and conform to its views of which transactions have
happened (including The DAO, the hack, and the rollback) or on the
Ethereum Classic blockchain and conform to its views (including The
DAO and the hack but not the rollback).56

51 See Christoph Jentzsch, Decentralized Autonomous Organization to Automate

Governance,
https://archive.org/stream/DecentralizedAutonomousOrganizations/WhitePaper_djvu.txt
(explaining the implementation of the DAO).

52 Matt Levine, Blockchain Company’s Smart Contracts Were Dumb, BLOOMBERG.COM
(Jun. 17, 2016), https://www.bloomberg.com/opinion/articles/2016-06-17/blockchain-company-
s-smart-contracts-were-dumb.

53 Nathaniel Popper, A Hacking of More Than $50 Million Dashes Hopes in the World of
Virtual Currency, N.Y. TIMES (Jun. 17, 2016),
https://www.nytimes.com/2016/06/18/business/dealbook/hacker-may-have-removed-more-
than-50-million-from-experimental-cybercurrency-project.html.. For technical details, see Phil
Daian, Analysis of the DAO exploit, Hacking Distributed (Jun. 18, 2016),
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/.

54 Joon Ian Wong & Ian Kar, Everything you need to know about the Ethereum “hard fork,”
QUARTZ (Jul. 18, 2016), https://qz.com/730004/everything-you-need-to-know-about-the-
ethereum-hard-fork/.

55 The Ethereum Classic Declaration of Independence, ETHEREUM CLASSIC,
https://ethereumclassic.github.io/assets/ETC_Declaration_of_Independence.pdf.

56 Aaron van Wirdum, Ethereum Classic Community Navigates a Distinct Path to the
Future, BITCOIN MAGAZINE (Aug. 19, 2016), https://bitcoinmagazine.com/articles/ethereum-
classic-community-navigates-a-distinct-path-to-the-future-1471620464/.

2019] ALL SMART CONTRACTS ARE AMBIGUOUS 19

The DAO was also (purportedly) governed by a legal contract,
although its main job was to defer as much as possible to the smart
contract. It stated:

The terms of The DAO Creation are set forth in the smart contract code
existing on the Ethereum blockchain at
0xbb9bc244d798123fde783fcc1c72d3bb8c189413. Nothing in this
explanation of terms or in any other document or communication may
modify or add any additional obligations or guarantees beyond those set
forth in The DAO’s code.57

In hindsight, this passage is underspecified. The phrase “the
Ethereum blockchain” does not uniquely refer. Does it mean Ethereum
or Ethereum Classic?58 It uniquely referred when the contract was
drafted, but no longer. It became underspecified — just like any
reference to a blockchain could, at any time.59

CONCLUSION

We began with three motivations for smart contracts: ambiguity,
corruption, and enforcement. It is obvious that protocol changes, forks,
51% attacks, and other consensus breakdowns are a kind of corruption
threat to smart contracts. They subject smart contracts to abrogation or
alteration at the whims of other blockchain users.60 It is also obvious that
the difficulty of getting people to use a blockchain at all is an enforcement
threat. It doesn’t matter what a smart contract controlling asset-title tokens
on a blockchain says if no one in the physical world pays any attention to
the blockchain.

We should also understand the problem of consensus as an ambiguity
threat. Natural languages are embedded in communities of people who use
and understand those languages. This introduces ambiguity and
uncertainty, because people may use and understand the same words in

57 The DAO - Explanation of Terms and Disclaimer, THE DAO COMMUNITY (Aug. 3, 2016),

https://web.archive.org/web/20160803111447/https://daohub.org/explainer.html.
58 It should be obvious that the social fact that one of the blockchains is commonly called

“Ethereum” and the other is not is relevant but not conclusive in resolving this ambiguity.
59 See Kolber, supra note 48, at 222 ("saying that the code is the contract is ambiguous as to

precisely what is meant by the code. ").
60 As I write this, Ethereum Classic was subjected to a $500,000 double-spending attack

based on a well-executed deep fork by users who temporarily dominated its mining power. Dan
Goodin, Almost $500,000 in Ethereum Classic coin stolen by forking its blockchain, ARS
TECHNICA (Jan. 8, 2019), https://arstechnica.com/information-technology/2019/01/almost-
500000-in-ethereum-coin-stolen-by-forking-its-blockchain/.

20 JOURNAL OF LAW & INNOVATION [Vol. 2: 1

different ways. But it also provides a backstop on how badly natural-
language contracts can fail. In many cases, the meaning of a contract is
clear to a large fraction of people in the relevant linguistic community. If
a contract isn’t worth the paper it’s printed on, it is because of corruption
or enforcement problems, not because of ambiguity.

Programming languages appear to reduce linguistic ambiguity. In
many cases, they do. Relative to a given implementation, a computer
program’s meaning is far more definite than a typical natural-language
term’s meaning. The very process of reducing a term to a formal-language
expression requires a degree of precision from its drafters that can itself
force them to understand and express their intentions more clearly.

But because programming languages are formal, constructed systems,
when the bottom drops out, it can really drop out. The relevant community
can redefine the programming language in a way that radically alters the
meaning of programs written in it. Smart contracts on a blockchain are
particularly vulnerable to this. The same consensus mechanism that keeps
them in a local equilibrium can lock them quickly into a new and very
different equilibrium — indeed, there are often powerful incentives for
users to push the blockchain into a different equilibrium. Blockchain-
based smart-contract programming languages don’t have continual
linguistic drift; they have occasional earthquakes.

In a legal system, the way to change the consequences of contracts is
to change the law. The natural-language terms in legal contracts still mean
what they used to, but their legal effects are different. But on a blockchain,
the way to change the consequences of contracts is to change the
semantics. The programming-language terms in smart contracts mean
something different than they used to, and they have different technical
effects, and these two differences are the same thing. Interpretation and
construction collapse.61

This is neither the first nor the last word on ambiguity in smart
contracts. I have argued the narrow point that perfect unambiguity is
impossible even in theory, because the technical layer ultimately rests on
a social one.62 There is a complementary and broader critique of smart

61 Lawrence B. Solum, The Interpretation-Construction Distinction, 27 CONST. COMMENT.
95 (2010). Note that in a legal contract incorporating a formal-language term there is still room
for construction. As I have argued, these terms are not ambiguous relative to a given formal
language; they are ambiguous when there are multiple plausible formal languages in which they
could be interpreted and the court (or another legal actor) must select among them. �e court
might also decide that a term’s meaning is clear but nonetheless disregard it for any of the
reasons it might disregard a natural-language term. See, e.g., Levine, supra note 52.

62 �is is hardly unique to smart contracts or to blockchains. It is a general characteristic of
social software. See James Grimmelmann, Anarchy, Status Updates, and Utopia, 35 PACE L.
REV. 135 (2014).

2019] ALL SMART CONTRACTS ARE AMBIGUOUS 21

contracts — spelled out best in papers by Karen Levy,63 Jeremy Sklaroff,64
and Kevin Werbach and Nicholas Cornell65 —that even where they do
provide unambiguous incorruptible automatic enforcement, this may not
be what contracting parties want or need. Writing code is hard, and
debugging it is even harder: one advantage of vague and ambiguous
natural language is that it is cheaper and faster to negotiate and write down.
And sometimes flexibility is good. As Levy explains of legal contracts,

As such, it can be both operationally and socially beneficial to leave some
terms underspecified; vagueness preserves operational flexibility for
parties to deal with newly arising circumstances after an agreement is
made, and sets the stage for social stability in an ongoing relationship.66

And this is to say nothing of the use of smart contracts for socially
harmful purposes,67 the environmental costs of blockchain mining, or the
recent blockchain investment bubble.68

However, all is not lost for the smart-contract project. Smart contracts
cannot be perfectly unambiguous, but they do not need to be perfect to be
useful. Socially determined facts are empirically contingent; they are
always open to contestation and change. Legal contracts also depend on
socially determined facts, and this has not stopped them from having an
extremely successful multi-thousand-year run. Much of the time, legal
contracts work adequately, despite the ambiguities of natural language. If
smart contracts can perform as well or better in even a single domain, they
will have a worthwhile role to play.

For better and for worse, blockchains make consensus explicit. The
mechanism that holds a blockchain together is the process for agreeing on
the next block. Whatever that process yields — in all of its technical and
social complexity — is the next block. Every smart contract is therefore
only as resilient as its underlying blockchain. Contract law depends on
social institutions, particularly those that establish and limit the

63 Karen E.C. Levy, Book-Smart, Not Street-Smart: Blockchain-Based Smart Contracts and

The Social Workings of Law, 3 ENGAGING SCIENCE, TECHNOLOGY, AND SOCIETY 1 (2017)
64 Jeremy M. Sklaroff, Smart Contracts and the Cost of Inflexibility, 166 U. PA. L. REV. 263

(2017).
65 Kevin Werbach & Nicolas Cornell, Contracts Ex Machina, 67 DUKE L.J. 70 (2017).
66 Levy, supra note 63, at 8. An interesting line of research involves trying to write more

deliberately flexible smart contracts. See, e.g., Bill Marino & Ari Juels, Setting Standards for
Altering and Undoing Smart Contracts, presented at RuleML 2016.

67 Ari Juels et al., The Ring of Gyges: Investigating the Future of Criminal Smart Contracts,
in PROC. ACM CONF. COMPUTER AND COMMUNICATIONS SECURITY 283 (2016).

68 See, e.g., Shaanan Cohney et al., Coin-Operated Capitalism, 119 COLUM. L. REV 591
(2019) (identifying lack of investor protections in numerous smart contracts).

22 JOURNAL OF LAW & INNOVATION [Vol. 2: 1

governments which enforce contracts. Smart contracts depend on social
institutions too, particularly those that establish and limit blockchain
communities. A blockchain whose governance fails will collapse, fork, or
be vulnerable to hijacking. All of these threaten the smart contracts that
run on it. There is no escape from politics, because blockchains are made
out of people.69

69 Curtis Yarvin, The DAO as a Lesson in Decentralized Governance, URBIT.ORG (Jun. 24,

2016), https://urbit.org/posts/essays/the-dao-as-a-lesson-in-decentralized-governance/; Steve
Randy Waldman, A Parliament Without a Parliamentarian, INTERFLUIDITY (Jun. 19, 2016),
https://www.interfluidity.com/v2/6581.html; Grimmelmann, supra note 62.

	Introduction
	I. Smart Contracts
	A. Smart Contracts
	B. Blockchains
	C. Smart Contracts on Blockchains

	II. Ambiguity
	A. Ambiguity in Natural Languages
	B. Ambiguity in Programming Languages

	III. Ambiguity in Smart Contracts
	A. Oracles
	B. Upgrades
	C. Forks
	D. The DAO

	Conclusion

